-DM10

Correction du devoir maison type Maths 3 (facultatif)

Problème 1

Partie A

1. (a) Commencer par noter que $I_{a,b}$ est l'intégrale d'une fonction continue (elle est polynomiale) sur un segment. Donc cette intégrale est parfaitement définie.

Calculons $I_{a,0}$ pour tout $a \in \mathbb{N}$. On a immédiatement :

$$\forall a \in \mathbb{N}, \ I_{a,0} = \int_0^1 x^a dx = \frac{1}{a+1}.$$

(b) Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$. Les fonctions $x \mapsto \frac{1}{a+1}x^{a+1}$ et $x \mapsto (1-x)^b$ sont polynomiales donc de classe \mathcal{C}^1 sur [0,1]. Par intégration par parties sur un segment, on a:

$$I_{a,b} = \left[\frac{1}{a+1} x^{a+1} (1-x)^b \right]_0^1 - \int_0^1 \frac{1}{a+1} x^{a+1} b (-1) (1-x)^{b-1} dx$$
$$= 0 - 0 + \frac{b}{a+1} \int_0^1 x^{a+1} (1-x)^{b-1} dx$$

Ainsi : $\forall (a,b) \in \mathbb{N} \times \mathbb{N}^*, \ I_{a,b} = \frac{b}{a+1} I_{a+1,b-1}$

(c) Soit $n \in \mathbb{N}$. Pour $k \in [0, n]$, on note $\mathcal{H}(k)$ la proposition : « $I_{n-k,k} = \frac{(n-k)! \times k!}{(n+1)!}$ ». Montrons cette propriété par récurrence.

Init. Pour k = 0, on sait déjà que :

$$I_{n,0} = \frac{1}{n+1} = \frac{n!}{(n+1)!} = \frac{n! \, 0!}{(n+1)!}$$

donc la proposition $\mathcal{H}(0)$ est vraie.

Hér. Soit $k \in [0, n-1]$ tel que la proposition $\mathcal{H}(k)$ est vraie. Alors $n-(k+1) \in \mathbb{N}$ et $k+1 \in \mathbb{N}^*$, donc la question précédente assure que :

$$I_{n-(k+1),k+1} = \frac{k+1}{n-k} I_{n-k,k} = \frac{k+1}{n-k} \times \frac{(n-k)! \times k!}{(n+1)!} = \frac{(n-k-1)! \times (k+1)!}{(n+1)!}.$$

D'où la proposition $\mathcal{H}(k+1)$ vraie.

Par principe de récurrence, la proposition $\mathcal{H}(k)$ est vraie pour tout entier $k \in [0, n]$. Pour $(a, b) \in \mathbb{N}^2$, il reste à poser n = a + b et $k = b \in [0, n]$. On obtient :

$$\forall (a,b) \in \mathbb{N}^2, \quad I_{a,b} = \frac{a! \times b!}{(a+b+1)!}$$

- (d) Soit $(a,b) \in \mathbb{N}^2$. Montrons que $f_{a,b}$ est une densité de probabilité :
 - $f_{a,b}$ est continue sur $\mathbb{R} \setminus \{0,1\}$ en tant que fonction polynomiale par morceaux ;
 - $f_{a,b} \geq 0 \text{ sur } \mathbb{R}$;
 - Son intégrale est nulle en dehors de [0, 1] et :

$$\int_0^1 f_{a,b}(x) \dot{\mathbf{x}} = \int_0^1 \frac{(a+b+1)!}{a! \times b!} x^a (1-x)^b \dot{\mathbf{x}} = \frac{1}{I_{a,b}} \int_0^1 x^a (1-x)^b \dot{\mathbf{x}} = \frac{1}{I_{a,b}} I_{a,b} = 1$$

Ainsi $f_{a,b}$ est une densité de probabilité pour tout couple $(a,b) \in \mathbb{N}^2$.

2. (a) L'intégrale de $x \mapsto x f_{a,b}(x)$ étant nulle en dehors du segment [0,1], et la fonction étant polynomiale sur [0,1], il y a bien convergence absolue. Ainsi X admet une espérance. De plus :

$$E(X) = \frac{1}{I_{a,b}} \int_0^1 x^{a+1} (1-x)^b \dot{\mathbf{x}} = \frac{1}{I_{a,b}} I_{a+1,b} = \frac{(a+b+1)!}{a! \times b!} \times \frac{(a+1)! \times b!}{(a+1+b+1)!}$$

Ainsi, $E(X) = \frac{a+1}{a+b+2}$.

(b) De même, X admet un moment d'ordre 2 donc X admet une variance. De plus :

$$E(X^2) = \frac{1}{I_{a,b}} I_{a+2,b} = \frac{(a+b+1)!}{a! \times b!} \times \frac{(a+2)! \times b!}{(a+2+b+1)!} = \frac{(a+2)(a+1)}{(a+b+3)(a+b+2)}$$

Par formule de Koenig-Huygens, on obtient :

$$V(X) = E(X^{2}) - E(X)^{2} = \frac{(a+2)(a+1)}{(a+b+3)(a+b+2)} - \left(\frac{a+1}{a+b+2}\right)^{2}$$

$$= \frac{a+1}{a+b+2} \left[\frac{a+2}{a+b+3} - \frac{a+1}{a+b+2} \right] = \frac{a+1}{a+b+2} \times \frac{(a+2)(a+b+2) - (a+1)(a+b+3)}{(a+b+3)(a+b+2)}$$

$$= (a+1) \frac{a^{2} + ab + 2a + 2a + 2b + 4 - a^{2} - ab - 3a - a - b - 3}{(a+b+3)(a+b+2)^{2}}$$

Finalement, on obtient $V(X) = \frac{(a+1)(b+1)}{(a+b+3)(a+b+2)^2}$.

(c) La fonction est polynomiale par morceaux donc de classe \mathscr{C}^1 sauf, peut-être, en 0 et en 1. De plus :

$$F(0) = (a+b+1)! \sum_{k=a+1}^{a+b+1} \frac{0^k (1-0)^{a+b+1-k}}{k! (a+b+1-k)!} = (a+b+1)! \sum_{k=a+1}^{a+b+1} 0 = 0.$$

Donc F est continue en 0 (la continuité à droite en 0 est évidente puisque la fonction est polynomiale sur [0,1]). De même :

$$F(1) = (a+b+1)! \sum_{k=a+1}^{a+b+1} \frac{1^k (1-1)^{a+b+1-k}}{k! (a+b+1-k)!} = (a+b+1)! \left[\sum_{k=a+1}^{a+b} 0 + \frac{0^0}{(a+b+1)!0!} \right] = 1.$$

Donc F est continue en 1. Ainsi, F est continue sur \mathbb{R} .

Enfin, par dérivation, F' est nulle sur $]-\infty,0[$ et sur $]1,+\infty[$ donc égale à $f_{a,b}$ sur ces intervalle et, pour $x\in]0,1[$:

$$F(x) = (a+b+1)! \left[\frac{x^{a+b+1}}{(a+b+1)!} + \sum_{k=a+1}^{a+b} \frac{x^k (1-x)^{a+b+1-k}}{k!(a+b+1-k)!} \right].$$

$$F'(x) = (a+b+1)! \left[\frac{x^{a+b}}{(a+b)!} + \sum_{k=a+1}^{a+b} \frac{kx^{k-1}(1-x)^{a+b+1-k} - (a+b+1-k)x^k(1-x)^{a+b-k}}{k!(a+b+1-k)!} \right]$$

$$= (a+b+1)! \left[\frac{x^{a+b}}{(a+b)!} + \sum_{k=a+1}^{a+b} \left(\frac{x^{k-1}(1-x)^{a+b-(k-1)}}{(k-1)!(a+b-(k-1))!} - \frac{x^k(1-x)^{a+b-k}}{k!(a+b-k)!} \right) \right]$$

$$= (a+b+1)! \left[\frac{x^{a+b}}{(a+b)!} + \frac{x^a(1-x)^b}{a!b!} - \frac{x^{a+b}}{(a+b)!} \right] = \frac{(a+b+1)!}{a! \times b!} x^a(1-x)^b = f_{a,b}(x).$$

par télescopage. On peut donc conclure que F est la fonction de répartition de X.

Partie B

- 3. Chacun des n tirages peut amener ou non une nouvelle boule rouge donc $X_n(\Omega) = [0, n]$.
- 4. (a) On a une probabilité de $\frac{x}{x+y}$ de tirer une boule rouge. Donc le programme doit retourner 0 avec une probabilité $\frac{x}{x+y}$. Il faut donc que la condition soit satisfaite avec cette probabilité. On va pour cela prendre comme condition $r \leq \frac{x}{x+y}$ qui est satisfaite avec une probabilité de $P(R \leq \frac{x}{x+y}) = \frac{x}{x+y} \in [0,1]$ $\frac{x}{x+y} = \frac{x}{x+y}$ où $R \hookrightarrow \mathcal{U}([0,1])$.

```
def tirage(x,y):
    r = rd.random()
    if r <= x/(x+y) :
        res = 0
    else :
        res = 1
    return res</pre>
```

(b) Si r=0 alors on ajoute une rouge sinon on ajoute une blanche, d'où x=x+1 ou y=y+1; le nombre de rouges ajoutées est donc la différence entre le nombre de boules rouges x au final et le nombre de boules rouges a au départ, soit Xn=x-a. Ainsi :

```
def experience(a,b,n):
    x = a
    y = b
    for k in range(n):
        r = tirage(x,y)
        if r == 0:
        x = x+1 #on a tiré une boule rouge
    else:
        y = y+1 #on a tiré une boule blanche
    Xn = x-a
    return Xn
```

(c) On va stocker (une approximation de) la loi de X_n dans la variable loi. Commençons par noter que $X_n(\Omega) = [0, n]$, et qu'il nous faut une approximation des probabilités $P(X_n = k)$ pour tout k = 0, ..., n. L'idée est habituelle : on répète l'expérience un grand nombre de fois (ici m fois), et on observe la fréquence de chaque issue, qui donnera une approximation de la probabilité théorique. On la stocke alors dans la k-ème composante loi [k] du vecteur loi. On renvoie alors ce vecteur.

Voici comment on va procéder plus concrètement :

- On initialise la variable loi en lui affectant un vecteur avec que des 0 à n+1 composantes (numérotées de 0 à n), à l'aide de la commande loi = np.zeros(n+1).
- On répète l'expérience m fois à l'aide d'une boucle for. Pour chaque résultat r = experience(a,b,n) de l'expérience, on ajoute 1 à la r-ème composante du vecteur loi.
 - Ainsi, à l'issue de la boucle for, le vecteur loi contient en k-ème composante, le nombre d'expériences (parmi les m effectuées) renvoyant l'issue k, c'est-à-dire le nombre d'expériences pour lesquelles k boules rouges ont été ajoutées à l'urne.
- Il reste alors à diviser par m le vecteur loi pour obtenir la fréquence de chaque issue, et donc une approximation de $P(X_n = k)$.

Voici une possibilité de programme :

```
def simulation(a,b,n,m):
    loi = np.zeros(n+1) # initialisation
    for k in range(m):
        r = experience(a,b,n) # on effectue l'expérience
        loi[r] = loi[r]+1 # +1 à l'effectif de l'issue r
    loi = loi/m # pour obtenir les fréquences
    return loi
```

- 5. (a) La distribution des fréquences semble équiprobable. On peut conjecturer que $X_n \hookrightarrow \mathscr{U}(\llbracket 0, n \rrbracket)$.
 - (b) On a $[X_1 = 1] = R_1$ donc $P(X_1 = 1) = \frac{1}{2}$, et $P(X_1 = 0) = \frac{1}{2}$. Donc $X_n \hookrightarrow \mathcal{U}([0, 1])$.
 - (c) Comme a = 1 et b = 1 alors, sachant que $[X_n = k]$ est réalisé, l'urne contient 1 + k boules rouges et 1 + n k boules blanches avant le tirage n + 1. Ainsi :

$$P_{[X_n=k]}(X_{n+1}=k) = P_{[X_n=k]}(\overline{R_{n+1}}) = \frac{1+n-k}{2+n}.$$

$$P_{[X_n=k]}(X_{n+1}=k+1) = P_{[X_n=k]}(R_{n+1}) = \frac{1+k}{2+n}.$$

$$\forall \ell \notin \{k, k+1\}, \ P_{[X_n=k]}(X_{n+1}=\ell) = 0.$$

(d) Soit $\mathcal{H}(n)$ la proposition : « $X_n \hookrightarrow \mathcal{U}(\llbracket 0, n \rrbracket)$ ». Montrons cette propriété par récurrence.

Init. On a vu à la question 5.(b) que la proposition $\mathcal{H}(1)$ est vraie.

Hér. Soit $n \in \mathbb{N}^*$ tel que la proposition $\mathcal{H}(n)$ est vraie. Soit $\ell \in [0, n+1]$. Par formule des probabilités totales avec le système complet $([X_n = k])_{k \in [0,n]}$ et avec la question 5.(c) :

$$P(X_{n+1} = \ell) = \sum_{i=0}^{n} P(X_n = k) P_{[X_n = k]}(X_{n+1} = \ell) = \frac{1}{n} \sum_{i=0}^{n} P_{[X_n = k]}(X_{n+1} = \ell)$$

$$= \begin{cases} \frac{1}{n+1} P_{[X_n = n]}(X_{n+1} = n+1) & \text{si } \ell = n+1 \\ \frac{1}{n+1} \left(P_{[X_n = \ell]}(X_{n+1} = \ell) + P_{[X_n = \ell-1]}(X_{n+1} = \ell) & \text{si } 1 \leqslant \ell \leqslant n \\ \frac{1}{n+1} P_{[X_n = 0]}(X_{n+1} = 0) & \text{si } \ell = 0 \end{cases}$$

$$= \begin{cases} \frac{1}{n+1} \times \frac{1+n}{2+n} & \text{si } \ell = n+1 \\ \frac{1}{n+1} \left(\frac{1+n-\ell}{2+n} + \frac{1+\ell-1}{2+n} \right) & \text{si } 1 \leqslant \ell \leqslant n \end{cases}$$

$$= \begin{cases} \frac{1}{n+2} & \text{si } \ell = n+1 \\ \frac{1}{n+2} & \text{si } 1 \leqslant \ell \leqslant n \\ \frac{1}{n+2} & \text{si } 1 \leqslant \ell \leqslant n \end{cases}$$

Donc $X_{n+1} \hookrightarrow \mathcal{U}(\llbracket 0, n+1 \rrbracket)$ c'est-à -dire que la proposition $\mathcal{H}(n+1)$ est vraie. Par principe de récurrence, on a donc montré que :

$$\forall n \in \mathbb{N}, \ X_n \hookrightarrow \mathcal{U}(\llbracket 0, n \rrbracket).$$

- 6. On revient au cas général où a et b sont deux entiers strictement positifs.
 - (a) Soit $k \in [1, n]$. Notons p_n la probabilité demandée. La formule des probabilités composées donne :

$$p_n = P(R_1)P_{R_1}(R_2)\dots P_{R_1\cap R_2\cap\dots\cap R_k}(\overline{R_{k+1}})\dots P_{R_1\cap R_2\cap\dots\cap R_k\cap\overline{R_{k+1}}\cap\overline{R_{k+2}}\cap\dots\cap\overline{R_{n-1}}}(\overline{R_n})$$

$$= \frac{a}{a+b} \times \frac{a+1}{a+b+1} \times \dots \times \frac{a+k-1}{a+b+k-1} \times \frac{b}{a+b+k} \times \frac{b+1}{a+b+k+1} \times \dots \times \frac{b+n-k-1}{a+b+n-1}$$

$$P(R_1 \cap R_2 \cap \dots \cap R_k \cap \overline{R_{k+1}} \cap \overline{R_{k+2}} \cap \dots \cap \overline{R_n}) = \frac{(a+k-1)! \times (b+n-k-1)! \times (a+b-1)!}{(a-1)! \times (b-1)! \times (a+b+n-1)!}$$

On notera que ce résultat est encore valable lorsque k = 0.

(b) Soit $k \in [0, n]$. Les produits commutent dans les fractions des calculs ci-dessus donc le résultat est indépendant de l'ordre des R_k et $\overline{R_i}$, et dépend seulement du nombre de chacun d'entre d'eux. Justement, pour calculer $P(X_n = k)$, il convient de dénombrer les possibilités d'ordre pour obtenir k nouvelles boules rouges et n - k nouvelles boules blanches puisque l'on vient de calculer la probabilité commune d'obtenir l'un de ces ordres. Il y a $\binom{n}{k}$ façons de positionner les k boules rouges parmi les rangs de tirages $1, \ldots, n$. On peut donc conclure que :

$$\forall k \in [0, n], \ P(X_n = k) = \binom{n}{k} \frac{(a+k-1)!(b+n-k-1)!(a+b-1)!}{(a-1)!(b-1)!(a+b+n-1)!}.$$

(c) Soit $k \in [0, n]$. Alors:

$$P(X_n = k) = \frac{n!(a+k-1)!(b+n-k-1)!(a+b-1)!}{(n-k)!k!(a-1)!(b-1)!(a+b+n-1)!}$$
$$= \frac{(a+k-1)!}{k!(a-1)!} \times \frac{(b+n-k-1)!}{(n-k)!(b-1)!} \times \frac{n!(a+b-1)!}{(a+b+n-1)!}$$

On a donc : $\forall k \in [0, n], \ P(X_n = k) = \frac{\binom{a+k-1}{a-1}\binom{b+n-k-1}{b-1}}{\binom{a+b+n-1}{a+b-1}}.$

(d) Par théorème de transfert :

$$E(a+X_n) = \sum_{k=0}^{n} (a+k)P(X_n = k) = \sum_{k=0}^{n} (a+k) \frac{\binom{a+k-1}{a-1} \binom{b+n-k-1}{b-1}}{\binom{a+b+n-1}{a+b-1}}$$

Par formules sur les coefficients binomiaux :

$$E(a+X_n) = \sum_{k=0}^{n} \frac{a\binom{a+k}{a}\binom{b+n-k-1}{b-1}}{\frac{a+b}{a+b+n}\binom{a+b+n}{a+b}} = \frac{a(a+b+n)}{a+b} \sum_{k=0}^{n} \frac{\binom{a+k}{a}\binom{b+n-k-1}{b-1}}{\binom{a+b+n}{a+b}}$$
$$= \frac{a(a+b+n)}{a+b} \sum_{k=0}^{n} \frac{\binom{(a+1)+k-1}{b-1}\binom{b+n-k-1}{b-1}}{\binom{(a+1)+b+n-1}{(a+1)+b-1}}$$

La dernière somme écrite correspond à la somme des probabilités des événements du système complet $([X_n=k])_{k\in \llbracket 0,n\rrbracket}$ avec a+1 boules rouges et b boules blanches initialement. On peut donc conclure que :

$$E(a+X_n) = \frac{a(a+b+n)}{a+b}.$$

Par linéarité de l'espérance, on en déduit que :

$$a + E(X_n) = \frac{a(a+b+n)}{a+b}$$
 donc $E(X_n) = \frac{a(a+b+n)}{a+b} - \frac{a(a+b)}{a+b}$.

On peut donc conclure que $E(X_n) = \frac{na}{a+b}$.

Partie C

7. (a) Soit x < 0. On a: $F_n(x) = P(Y_n \le x) = P(X_n \le nx)$. Comme $nx < 0 = \min(X_n(\Omega))$, on en déduit que :

$$\forall x < 0, \quad F_n(x) = 0.$$

(b) Soit $x \ge 1$. On a:

$$F_n(x) = P(Y_n \leqslant x) = P(X_n \leqslant nx).$$

Comme $nx \ge n = \max(X_n(\Omega))$, on en déduit que

$$\forall x \geqslant 0, \quad F_n(x) = 1.$$

8. (a) On a déjà vu que $F_n(x) = P(Y_n \le x) = P(X_n \le nx)$. Comme $\lfloor nx \rfloor$ est le plus grand entier inférieur ou égal à nx, comme 0 < nx < n et comme X_n ne prend que des valeurs entières comprises entre 0 et n alors

$$F_n(x) = P(X_n \leqslant \lfloor nx \rfloor).$$

(b) On en déduit que :

$$F_n(x) = \sum_{k=0}^{\lfloor nx \rfloor} P(X_n = k) = \sum_{k=0}^{\lfloor nx \rfloor} \frac{\binom{a+k-1}{a-1} \binom{b+n-k-1}{b-1}}{\binom{a+b+n-1}{a+b-1}} = \frac{1}{\binom{a+b+n-1}{a+b-1}} \sum_{k=0}^{\lfloor nx \rfloor} \binom{a+k-1}{a-1} \binom{b+n-k-1}{b-1}$$

On applique alors la formule proposée en introduction de cette partie avec $p = a + \lfloor nx \rfloor$ ce qui donne bien $p \in \mathbb{N}, p \geqslant a$ et $p \leqslant a + n \leqslant a + b + n - 1$ puisque b > 0. Ainsi :

$$F_n(x) = \frac{1}{\binom{a+b+n-1}{a+b-1}} \sum_{i=a}^{a+b-1} \binom{a+\lfloor nx \rfloor}{i} \binom{a+b+n-1-a+\lfloor nx \rfloor}{a+b-1-i}.$$

(c) Soit $j \in \mathbb{N}$ fixé. Pour $m \geqslant j$, on a :

$$\binom{m}{j} = \frac{m(m-1)\dots(m-j+1)}{j!} \underset{m\to+\infty}{\sim} \frac{m\times m\times \dots\times m}{j!}.$$

Ainsi, on a l'équivalent :

$$\forall j \in \mathbb{N}, \ \binom{m}{j} \underset{m \to +\infty}{\sim} \frac{m^j}{j!}.$$

(d) Comme $nx - 1 < \lfloor nx \rfloor \le nx$ alors $1 - \frac{1}{nx} < \frac{\lfloor nx \rfloor}{nx} \le 1$. Par théorème des gendarmes, $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{nx} \text{ existe et vaut 1, ce qui se récrit } \lfloor nx \rfloor \underset{n \to +\infty}{\sim} nx.$

De même avec 1 - x > 0:

$$n(1-x) \leq \lfloor n - nx \rfloor = n - \lfloor nx \rfloor < n(1-x) + 1.$$

D'où l'encadrement :

$$1 \leqslant \frac{n - \lfloor nx \rfloor}{n(1-x)} < 1 + \frac{1}{n(1-x)}.$$

Puisque $\lim_{n\to+\infty}\frac{n-\lfloor nx\rfloor}{n(1-x)}=1$, on en déduit par théorème des gendarmes l'équivalent

$$n - \lfloor nx \rfloor \underset{n \to +\infty}{\sim} n(1-x) \xrightarrow[n \to +\infty]{} +\infty.$$

Alors, pour tout entier $i \in [a, a+b-1]$, d'après la question précédente, on a :

$$\frac{\binom{\lfloor nx\rfloor+a}{i}\binom{a+b+n-1-\lfloor nx\rfloor}{a+b-1-i}}{\binom{a+b+n-1}{a+b-1}} \underset{n\to+\infty}{\sim} \frac{\lfloor nx\rfloor^i}{i!} \times \frac{(n-\lfloor nx\rfloor)^{a+b-1-i}}{(a+b-1-i)!} \times \frac{(a+b-1)!}{n^{a+b-1}}$$

$$\underset{n\to+\infty}{\sim} \frac{(a+b-1)!}{i!(a+b-1-i)!} \times \frac{n^ix^i \times n^{a+b-1-i}(1-x)^{a+b-1-i}}{n^{a+b-1}}$$

$$\underset{n\to+\infty}{\sim} \binom{a+b-1}{i}x^i(1-x)^{a+b-1-i} \xrightarrow[n\to+\infty]{} \binom{a+b-1}{i}x^i(1-x)^{a+b-1-i}$$

Par somme des limites réelles, on en conclut que :

$$\forall x \in]0,1[\,,\,\,\lim_{n \to +\infty} F_n(x) = \sum_{i=a}^{a+b-1} \binom{a+b-1}{i} x^i (1-x)^{a+b-1-i}.$$

9. On a:

$$F_n(0) = P(X_n \le 0) = P(X_n = 0) = \frac{\binom{a+0-1}{a-1}\binom{b+n-0-1}{b-1}}{\binom{a+b-1+n}{a+b-1}} = \frac{\binom{b-1+n}{b-1}}{\binom{a+b-1+n}{a+b-1}}$$
$$F_n(0) \underset{n \to +\infty}{\sim} \frac{n^{b-1}}{(b-1)!} \times \frac{(a+b-1)!}{n^{a+b-1}} = \frac{(a+b-1)!}{(b-1)!} \times \frac{1}{n^a}$$

Comme a > 0 alors : $F_n(0) = \frac{\binom{b-1+n}{b-1}}{\binom{a+b-1+n}{a+b-1}} \xrightarrow[n \to +\infty]{} 0$.

10. On en déduit que :

$$F_{n}(x) \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } x \leq 0 \\ \sum_{i=a}^{a+b-1} \binom{a+b-1}{i} x^{i} (1-x)^{a+b-1-i} & \text{si } x \in]0,1[\\ 1 & \text{si } x \geq 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } x \leq 0 \\ \sum_{i=a}^{(a-1)+(b-1)+1} \binom{(a-1)+(b-1)+1}{i} x^{i} (1-x)^{(a-1)+(b-1)+1-i} & \text{si } x \in]0,1[\\ 1 & \text{si } x \geq 1 \end{cases}$$

On reconnaît la fonction de répartition F définie en partie A (en 0, c'est la même valeur) avec les paramètres a-1 et b-1 en lieux et places respectives de a et b. On peut donc conclure que la suite $(Y_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire de loi $\beta(a-1,b-1)$.

11. Par linéarité de l'espérance :

$$E(Y_n) = \frac{1}{n}E(X_n) = \frac{1}{n} \times \frac{na}{a+b} = \frac{a}{a+b}$$

Ainsi
$$\lim_{n \to +\infty} E(Y_n) = \frac{a}{a+b}$$
.

Or l'espérance de la loi $\beta(a-1,b-1)$ vaut $\frac{(a-1)+1}{(a-1)+(b-1)+2}$ d'après la question 2.(a) donc :

$$E\left(\beta(a-1,b-1)\right) = \frac{a}{a+b}.$$

En conclusion, la convergence en loi conserve l'espérance dans cette situation (la limite de l'espérance est l'espérance de la limite, ce résultat n'est pas toujours vrai).

Problème 2

Partie I. Deux exemples

1. Calculons:

$$(R_{\theta})^2 = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & 0 \\ 0 & \sin^2 \theta + \cos^2 \theta \end{pmatrix} = I_2.$$

Or, pour $\theta, \theta' \in]0, \pi[$, on a $\sin \theta \neq \sin \theta'$ et donc $R_{\theta} \neq R_{\theta'}$. Ainsi, il existe une infinité de matrices deux à deux distinctes de la forme R_{θ} . Toutes sont des racines carrées de I_2 et donc I_2 admet une infinité de racines carrées.

2. Supposons par l'absurde que $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est une racine carrée de $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Alors

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + cb \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Par identification des coefficients, on obtient c(a + d) = 0.

Puisque b(a+d)=1, nécessairement $a+d\neq 0$ et donc c=0.

Mais alors $a^2=0$ et $d^2=0$, donc a=d=0, ce qui contredit $a+d\neq 0$.

Donc $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ n'admet pas de racine carrée.

Partie II. Racines carrées d'une matrice de la forme $I_n + N$ avec N nilpotente

3. On a $\sqrt{1+t} = (1+t)^{1/2}$ et donc

$$\sqrt{1+t} = 1 + \frac{1}{2}t + \frac{1}{2}\left(\frac{1}{2} - 1\right)\frac{t^2}{2!} + \frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)\frac{t^3}{3!} + o\left(t^3\right) = 1 + \frac{t}{2} - \frac{t^2}{8} + \frac{1}{16}t^3 + o\left(t^3\right).$$

4. Calculons $1 + x - (a_0 + a_1x + a_2x^2 + a_3x^3)^2$:

$$\begin{aligned} 1+x-\left(1+\frac{x}{2}-\frac{x^2}{8}+\frac{1}{16}x^3\right)^2 &= 1+x-\left(1+\frac{x^2}{4}+\frac{x^4}{64}+\frac{x^6}{256}+x-\frac{x^2}{4}+\frac{x^3}{8}-\frac{x^3}{8}+\frac{x^4}{16}-\frac{x^5}{64}\right) \\ &= -\frac{5}{64}x^4+\frac{x^5}{64}-\frac{x^6}{256} = x^4\left(-\frac{5}{64}+\frac{x}{64}-\frac{x^2}{256}\right). \end{aligned}$$

Ainsi, si on pose $Q(x) = \left(-\frac{5}{64} + \frac{x}{64} - \frac{x^2}{256}\right) \in \mathbb{R}[x]$, on a bien

$$1 + x = \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3\right)^2 + x^4 Q(x).$$

5. Si $N^4 = 0$, alors

$$I_n + N = \left(I_n + \frac{N}{2} - \frac{N^2}{8} + \frac{1}{16}N^3\right)^2 + \underbrace{N^4 Q(N)}_{=0}$$

Et donc une racine carrée de $I_n + N$ est $I_n + \frac{N}{2} - \frac{N^2}{8} + \frac{1}{16}N^3$.

Partie III. Racines carrées d'une matrice de $\mathcal{M}_n(\mathbb{R})$ admettant n valeurs propres strictement positives et deux à deux distinctes

6. (a) Soit $\lambda \in \operatorname{Spec}(f)$, et soit $x \in E_{\lambda}(f)$. Alors

$$f(g(x)) = (f \circ g)(x) = (g \circ f)(x) = g(f(x)) = g(\lambda x) = \lambda g(x).$$

Ainsi, g(x) appartient à $E_{\lambda}(f)$, et $E_{\lambda}(f)$ est stable par g.

(b) Notons que par hypothèse, f possède n valeurs propres distinctes, donc ses sous-espaces propres sont tous de dimension 1.

Soit x un vecteur propre de f, et soit λ la valeur propre associée. Puisque x est non nul (en tant que vecteur propre) et que dim $E_{\lambda}(f) = 1$, il suit que $E_{\lambda}(f) = \text{Vect}(x)$.

De plus, nous avons prouvé à la question précédente que $g(x) \in E_{\lambda}(f) = \text{Vect}(x)$. Et donc il existe un réel μ tel que $g(x) = \mu \cdot x$. x apparait comme un vecteur propre de g pour la valeur propre μ . Ainsi, tout vecteur propre de f est vecteur propre de g.

(c) f est diagonalisable car il possède n valeurs propres distinctes.

Si \mathcal{B} est une base de \mathbb{R}^n formée de vecteurs propres de f, alors par la question précédente, c'est aussi une base de vecteurs propres de g. Et donc la matrice de g dans la base \mathcal{B} est diagonale.

Puisque f est diagonalisable, une telle base \mathcal{B} existe, et donc la matrice de g dans cette base est diagonale : g est diagonalisable.

- 7. (a) A possède n valeurs propres distinctes, donc elle est diagonalisable : il existe une matrice Q inversible et une matrice D diagonale telles que $A = Q^{-1}DQ$. Et si l'on pose $P = Q^{-1}$, alors $A = PDP^{-1}$ et donc $P^{-1}AP = D$ est diagonale.
 - (b) Notons $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$, de sorte que les λ_i sont les valeurs propres de A, et donc sont strictement positifs par hypothèse.

Soit $D_1 = \text{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. Alors

$$(PD_1P^{-1}) = PD_1^2P^{-1} = PDP^{-1} = A.$$

(c) Si R est une racine carrée de A, alors $A=R^2$, et donc A est un polynôme en R, qui commute donc avec R.

Soit f l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique est A, et soit g l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique est R.

Alors f possède n valeurs propres distinctes et f et g commutent car A et R commutent. Soit \mathscr{B} la base de \mathbb{R}^n telle que P soit la matrice de passage de la base canonique à \mathscr{B} . Alors, par la formule de changement de base,

$$P^{-1}AP = P_{\mathscr{B},\mathscr{B}_{can}} \operatorname{Mat}_{\mathscr{B}_{can}}(f) P_{\mathscr{B}_{can},\mathscr{B}} = \operatorname{Mat}_{\mathscr{B}}(f)$$

Et donc la matrice de f dans la base \mathscr{B} est diagonale : \mathscr{B} est une base de \mathbb{R}^n formée de vecteurs propres de f. Et donc par la question 6.(c), $\mathrm{Mat}_{\mathscr{B}}(g)$ est diagonale.

Or, $Mat_{\mathscr{B}}(g) = P^{-1}RP : P^{-1}RP$ est une matrice diagonale.

(d) Si R est une racine carrée de A, alors

$$(P^{-1}RP)^2 = P^{-1}R^2P = P^{-1}AP = D.$$

De plus, $P^{-1}RP$ est une matrice diagonale, donc de la forme Diag (μ_1, \ldots, μ_n) .

On en déduit que Diag $(\mu_1, \ldots, \mu_n)^2 = \text{Diag}(\mu_1^2, \ldots, \mu_n^2) = \text{Diag}(\lambda_1, \ldots, \lambda_n)$.

Et donc $\mu_1^2 = \lambda_1, \dots, \mu_n^2 = \lambda_n$. Ainsi, pour tout $i \in [1, n], \mu_i = \pm \sqrt{\lambda_i}$.

Inversement, il est facile de vérifier que toute matrice de la forme P Diag (a_1, \ldots, a_n) P^{-1} , avec $a_i = \pm \sqrt{\lambda_i}$ est une racine carrée de A.

Et donc A admet exactement 2^n racines carrées.

Partie IV. Racine carrée symétrique positive d'une matrice symétrique positive de $\mathcal{M}_n(\mathbb{R})$

8. Soit λ une valeur propre de S et soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur propre associé à la valeur propre λ . Alors

$${}^{t}XSX = {}^{t}X(SX) = {}^{t}X\lambda X = \lambda {}^{t}XX.$$

Mais si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, alors ${}^tXX = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i^2 \geqslant 0$. Puisque X est non

nul, l'un au moins des x_i est non nul et donc ${}^tXX > 0$.

D'autre part, puisque S est une matrice symétrique positive, on sait que ${}^tXSX \ge 0$.

On en déduit que $\lambda = \frac{t_X SX}{t_X X} \geqslant 0$.

Et donc toutes les valeurs propres de S sont positives ou nulles.

- 9. Puisque S est symétrique réelle, elle est diagonalisable en base orthonormée : il existe P orthogonale telle que $P^{-1}SP$ soit diagonale.
- 10. Notons $D = \text{Diag}(\lambda_1, \dots, \lambda_n)$, de sorte que les λ_i sont les valeurs propres de S.

Posons alors $D_1 = \text{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$ et $R = P^{-1}D_1P$.

Alors, $R^2 = P^{-1}D_1^2P = P^{-1}DP = S$ et

$${}^{t}R = {}^{t}\left(P^{-1}D_{1}P\right) = {}^{t}P^{t}D_{1}{}^{t}P^{-1} = {}^{t}PD_{1}{}^{t}P^{-1}.$$

Puisque P est orthogonale, on a $P^{-1} = {}^{t}P$ et donc ${}^{t}P^{-1} = {}^{t}({}^{t}P) = P$ de sorte que ${}^{t}R = P^{-1}D_{1}P = R$. Ainsi, R est symétrique, et c'est donc une racine carrée de S symétrique. Enfin, notons X_{1}, \ldots, X_{n} une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de R, telle que

 $RX_i = \sqrt{\lambda_i}X_i$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Il existe des réels μ_1, \dots, μ_n tels que $X = \sum_{i=1}^n \mu_i X_i$. Alors

$${}^{t}XRX = \left(\sum_{i=1}^{n} \mu_{i}{}^{t}X_{i}\right)R\left(\sum_{j=1}^{n} \mu_{j}X_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}\mu_{j}{}^{t}X_{i}\left(RX_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}\mu_{j}\lambda_{j}{}^{t}X_{i}X_{j}.$$

Or, $(X_1, ..., X_n)$ étant orthonormée, on a ${}^tX_iX_j = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$

Et donc
$${}^tXRX = \sum_{i=1}^n \lambda_i \mu_i^2 \underbrace{{}^tX_iX_i}_{=\|X_i\|^2 \geqslant 0} \geqslant 0.$$

Ceci prouve donc que R est une matrice symétrique positive. Et donc S admet une racine carrée symétrique positive.

11. (a) Soit X un vecteur propre de R associé à la valeur propre λ . Alors $RX = \lambda X$, de sorte que

$$SX = R^2X = R(RX) = R(\lambda X) = \lambda RX = \lambda^2 X.$$

Donc X^2 est valeur propre de S. De plus, pour tout $X \in SEP(R, \lambda)$, on a $SX = \lambda^2 X$, de sorte que $X \in SEP(S, \lambda^2)$.

On a donc bien $SEP(R, \lambda) \subset SEP(S, \lambda^2)$.

(b) Notons que les SEP (R, λ_i) sont en somme directe car R est symétrique, donc ses sousespaces propres sont deux à deux orthogonaux et donc en somme directe.

Il en est de même pour les SEP (S, λ_i^2) , car les λ_i étant positifs et deux à distincts, il en est de même de λ_i^2 .

Enfin, si $x \in \bigoplus_{i=1}^p \text{SEP}(R, \lambda_i)$, alors il existe $x_1 \in \text{SEP}(R, \lambda_1), \dots, x_p \in \text{SEP}(R, \lambda_p)$ tels que $x = x_1 + \dots + x_p$. Mais alors

$$x = \underbrace{x_1}_{\in SEP(S, \lambda_1^2)} + \dots + \underbrace{x_p}_{\in SEP(S, \lambda_p^2)} \in \bigoplus_{i=1}^p SEP(S, \lambda_i^2)$$

Et donc

$$\bigoplus_{i=1}^{p} SEP(R, \lambda_i) \subset \bigoplus_{i=1}^{p} SEP(S, \lambda_i^2)$$

(c) La dimension d'une somme directe de sous-espaces vectoriels est la somme des dimensions, donc

$$\dim\left(\bigoplus_{i=1}^{p} EP\left(R, \lambda_{i}\right)\right) \leqslant \dim\left(\bigoplus_{i=1}^{p} SEP\left(S, \lambda_{i}^{2}\right)\right) \Leftrightarrow \sum_{i=1}^{p} \dim SEP\left(R, \lambda_{i}\right) \leqslant \sum_{i=1}^{p} \dim SEP\left(S, \lambda_{i}^{2}\right).$$

De plus, R est diagonalisable car symétrique réelle, et donc

$$\bigoplus_{i=1}^{p} \operatorname{SEP}(R, \lambda_{i}) = \mathscr{M}_{n,1}(\mathbb{R}) \Rightarrow \sum_{i=1}^{p} \dim \operatorname{SEP}(R, \lambda_{i}) = n$$

Enfin,
$$\bigoplus_{i=1}^p \operatorname{SEP}\left(S, \lambda_i^2\right) \subset \mathscr{M}_{n,1}(\mathbb{R})$$
 et donc $\sum_{i=1}^p \dim \operatorname{SEP}\left(S, \lambda_i^2\right) \leqslant n$. Ainsi

$$n \leqslant \sum_{i=1}^{p} \dim \operatorname{SEP}(R, \lambda_i) \leqslant \sum_{i=1}^{p} \dim \operatorname{SEP}(S, \lambda_i^2) \leqslant n$$

(d) Les inégalités de la question précédente sont nécessairement des égalités, et donc

$$\sum_{i=1}^{p} \dim \operatorname{SEP}(R, \lambda_i) = \sum_{i=1}^{p} \dim \operatorname{SEP}(S, \lambda_i^2) = n$$

Puisque la somme des dimensions des sous-espaces propres de S doit être égale à n, les SEP (S, λ_i^2) , $1 \le i \le p$ sont les seuls sous-espaces propres de S, et donc $\lambda_1^2, \ldots, \lambda_p^2$ sont les seules valeurs propres de S.

Puisque $\forall i \in [1, p]$, on a dim SEP $(R, \lambda_i) \leq \dim \text{SEP}(S, \lambda_i^2)$, on en déduit que

$$\forall i \in [1, p], \quad \dim \operatorname{SEP}(R, \lambda_i) = \dim \operatorname{SEP}\left(S, \lambda_i^2\right)$$

et donc

$$\forall i \in [1, p], \quad \text{SEP}(R, \lambda_i) = \text{SEP}(S, \lambda_i^2).$$

- (e) P est la matrice de passage de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ à une base \mathcal{B} , orthonormée, et formée de vecteurs propres de S. Elle est donc également formée de vecteurs propres de R. Si f est l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ dont la matrice dans la base canonique est R, alors $P^{-1}RP$ est la matrice de f dans la base \mathcal{B} , qui est formée de vecteurs propres : c'est une matrice diagonale : $P^{-1}RP$ est diagonale.
- (f) D'après ce qui précède, $P^{-1}RP$ est diagonale, à coefficients diagonaux positifs, et $(P^{-1}RP)^2 = P^{-1}R^2P = P^{-1}SP = D$. Donc si $D = \text{Diag}(a_1, \dots, a_n)$, nécessairement

$$P^{-1}RP = \text{Diag}\left(\sqrt{a_1}, \dots, \sqrt{a_n}\right).$$

Et donc

$$R = P \operatorname{Diag}(\sqrt{a_1}, \dots, \sqrt{a_n}) P^{-1}$$
.

Ainsi, il existe au plus une racine carrée de S qui soit symétrique positive, et nous avons déjà prouvé à la question 10 qu'il en existe une : S possède une unique racine carrée symétrique positive.