TD20

Fonctions de plusieurs variables sur un ouvert de \mathbb{R}^n

Éléments de topologie de \mathbb{R}^n

Exercice 20.1 (\bigstar)

Les ensembles suivants sont-ils ouverts?

$$A = \{(x, y, z) \in \mathbb{R}^3, \ xyz \neq 0\} \ ; \ B = \{(x, y, z) \in \mathbb{R}^3, \ 2x^2y - 5z < 3 \text{ ou } |z| > 2\}$$
$$C = \{(x, y) \in \mathbb{R}^2, \ |x| \neq 1 \text{ et } y \neq 1\} \ ; \ D = \mathbb{R}^n \setminus \{(a_1, \dots, a_n)\}.$$

Fonctions \mathscr{C}^2 sur un ouvert de \mathbb{R}^n

Exercice 20.2 (*)

On considère la fonction f définie par $f(x,y) = \ln(1+xy)$.

- 1. Déterminer son ensemble de définition Ω et montrer que c'est un ouvert.
- 2. Montrer que f est de classe \mathscr{C}^2 sur Ω et déterminer son gradient et sa hessienne en tout point de Ω .
- 3. Justifier l'existence et déterminer le développement limité à l'ordre 2 de f en a=(1,1).

Exercice 20.3
$$(\star\star\star)$$

Soit la fonction $f:(x,y)\mapsto\begin{cases} \frac{xy^3}{x^2+y^2} & \text{si }(x,y)\neq(0,0)\\ 0 & \text{sinon.} \end{cases}$

- 1. Montrer que f est de classe \mathscr{C}^1 et déterminer ses dérivées partielles premières.
- 2. Calculer $\partial_{1,2}^2 f(0,0)$ et $\partial_{2,1}^2 f(0,0)$. f est-elle de classe \mathscr{C}^2 ?

Recherche d'extrema sur un ouvert

Exercice 20.4 (\bigstar)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 , et $a \in \mathbb{R}^n$ un point critique de f. Notons $A = \nabla^2 f(a)$. Conclure si possible sur la nature local de a dans les cas suivants :

•
$$\operatorname{Spec}(A) = \{1, 2\}$$

• Spec
$$(A) = \{0, -2, -6\}$$

• Spec
$$(A) = \{2, -2\}$$

• Spec
$$(A) = \{-2, 0, 2\}$$

Exercice 20.5 (★)

Considérons la fonction $f:(x,y)\mapsto x^3+xy+y^3$.

- 1. Représenter graphiquement cette fonction à l'aide de Python.
- 2. Déterminer les points critiques de la fonction f.
- 3. Déterminer graphiquement la nature de ces points critiques. Vérifier ces résultats par le calcul.
- 4. Déterminer les vecteurs propres de la hessienne de f en le point col. Pouvez vous retrouver graphiquement ces vecteurs ?

Exercice 20.6 $(\bigstar \bigstar)$

Soit f la fonction définie sur $\Omega =]0,1[\times]0,1[$ par $f(x,y) = \frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{x+y}$.

- 1. Montrer que f est \mathscr{C}^2 sur l'ouvert $\Omega,$ et calculer ses dérivées partielles premières et secondes.
- 2. Déterminer les points critiques de f.
- 3. Montrer que f admet un extremum local sur Ω .

Exercice 20.7 $(\bigstar \star)$

Étudier les extrema locaux des fonctions suivantes et préciser s'il s'agit d'extrema globaux. On pourra s'aider de Python (représentation graphique de la fonction, valeurs propres de la hessienne).

$$f: (x,y) \mapsto x^4 + y^4 - 2(x-y)^2 \; ; \; f: (x,y) \mapsto x \left((\ln x)^2 + y^2 \right)$$
$$f: (x,y,z) \mapsto 2x^2 - 4x + y^2 + 2y + z^2 - 2xz \; ; \; f: (x,y,z) \mapsto xy + yz + zx - xyz$$

Exercice 20.8 $(\star\star)$

Soit f la fonction définie sur \mathbb{R}^3 par $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$.

- 1. Justifier que f est de classe \mathscr{C}^2 , et calculer ses dérivées partielles d'ordre 1 et 2.
- 2. Montrer que f admet exactement cinq points critiques, dont le point (0,0,0).
- 3. Déterminer la matrice hessienne de f en (0,0,0), et en déduire que f possède un minimum local en (0,0,0). Est-ce un minimum global de f?
- 4. Pour chacun des autres points critiques, vérifier que 4 est valeur propre de la matrice hessienne, et déterminer si f admet ou non un extremum local en ce point.

Exercice 20.9 ($\star\star$ - EML ECE 2014)

On note $\varphi: \mathbb{R}_+^* \to \mathbb{R}$ la fonction définie par $\varphi(t) = e^t - te^{\frac{1}{t}}$. On note $U = \mathbb{R} \times]0, +\infty[$ et f la fonction définie sur U par

$$f(x,y) = xy - e^x \ln(y).$$

1. Montrer l'équivalence : $\varphi(t) = 0 \Leftrightarrow t - \ln(t) - \frac{1}{t} = 0.$

En déduire que l'équation $\varphi(t) = 0$ possède une unique solution que l'on déterminera.

- 2. Montrer que f est \mathscr{C}^2 sur U et déterminer ses dérivées partielles premières et secondes.
- 3. Montrer que (x, y) est un point critique de f si et seulement si :

$$x > 0, \ y = e^{\frac{1}{x}} \ \text{et} \ \varphi(x) = 0.$$

- 4. En déduire que f admet un unique point critique sur U.
- 5. f admet-elle un extremum local sur U?

Exercice 20.10 (\bigstar)

Soit $f:(x,y) \mapsto x^2 + y^2 + 2xy + xy^3$.

- 1. Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R}^2 et qu'elle admet un unique point critique.
- 2. Déterminer les valeurs propres de la hessienne en ce point critique. Peut-on conclure quant à la nature de ce point critique?
- 3. Étudier les signes de f(x,x) et f(x,-x), et conclure.

Exercice 20.11 $(\bigstar \bigstar)$

Soit la fonction f définie sur $(\mathbb{R}_+^*)^3$ par $f(x,y,z) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$.

- (a) Vérifier que f possède une infinité de points critiques, et que ceux-ci sont les points de la forme $A_a = (a, a, a)$, où a est un réel strictement positif quelconque.
 - (b) Déterminer la matrice M de $\mathcal{M}_3(\mathbb{R})$ telle que $\nabla^2(f)(A_a) = \frac{1}{a^2}M$, puis déterminer les valeurs propres de M. En déduire alors celles de $\nabla^2(f)(A_a)$.
 - (c) Cela permet-il de conclure quant à l'existence d'un extremum local de f sur $(\mathbb{R}_+^*)^3$?
- 2. (a) Soit $(x,y) \in (\mathbb{R}_+^*)^2$. Montrer que pour tout réel z strictement positif, on a :

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} \ge \frac{x}{y} + 2\sqrt{\frac{y}{x}}.$$

(b) En étudiant la fonction $t \mapsto t + \frac{2}{\sqrt{t}} \sup]0, +\infty[$, montrer que pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, on a: $\frac{x}{y} + 2\sqrt{\frac{y}{x}} \ge 3.$

(c) Que peut-on alors conclure?

Exercice 20.12 ($\star\star$) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \left(1 + y + xy - \frac{x^2}{2}\right)e^y$.

- 1. Montrer que f est \mathscr{C}^2 sur \mathbb{R}^2 , déterminer ses dérivées partielles premières et secondes.
- 2. Montrer que f admet un unique point critique (α, β) .

- 3. Vérifier que la détermination des valeurs propres de $\nabla^2 f(\alpha, \beta)$ ne suffit pas à déterminer la nature de ce point critique.
- 4. Déterminer un vecteur propre u de $\nabla^2 f(\alpha, \beta)$ associé à la valeur propre 0.
- 5. En étudiant la fonction $t \mapsto f((\alpha, \beta) + tu)$, déterminer la nature du point critique (α, β) .

Exercice 20.13 ($\star\star$ - Position du graphe par rapport à l'hyperplan tangent - \sim) Soit f une fonction de classe \mathscr{C}^2 sur un ouvert U de \mathbb{R}^n . Soit $a \in U$.

On note q_a la forme quadratique associée à la matrice hessienne $\nabla^2(f)(a)$.

On considère la fonction g définie pour tout $x \in U$ par :

$$g(x) = f(x) - f(a) - \langle \nabla(f)(a), x - a \rangle.$$

- 1. Montrer que g(a) = 0, que a est un point critique de g et que $\nabla^2(g)(a) = \nabla^2(f)(a)$.
- 2. En déduire les résultats suivants :
 - Si $\operatorname{Sp}(\nabla^2(f)(a)) \subset \mathbb{R}_+^*$, alors le graphe de f se situe localement au-dessus de l'hyperplan tangent en a.
 - Si $\operatorname{Sp}(\nabla^2(f)(a)) \subset \mathbb{R}_+^*$, alors le graphe de f se situe localement au-dessous de l'hyperplan tangent en a.
 - Si $\nabla^2(f)(a)$ possède des valeurs propres non nulles de signes contraires, alors le graphe de f traverse l'hyperplan tangent au voisinage de a.
- 3. On suppose que U est un ouvert convexe et que pour tout $x \in U$, $\operatorname{Sp}(\nabla^2(f)(x)) \subset \mathbb{R}_+$. Que peut-on en déduire ? Quel résultat sur les fonctions convexes d'une variable réelle généralise-t-on ?
- 4. **Application.** Soit $f:(x,y)\mapsto x^3+y^3$.
 - (a) Étudier localement la position relative du graphe de f par rapport à son hyperplan tangent en (1,1), (-1,-1) et (-1,1).
 - (b) Python. Représenter le graphe de f ainsi que les plans tangents en ces trois points. Vérifier graphiquement les résultats de la question précédente.

Exercice 20.14 ($\star\star\star$ - Notations de Monge - \swarrow)

On suppose que f est une fonction de classe \mathscr{C}^2 sur U, un ouvert de \mathbb{R}^2 . Soit $a \in U$ un point critique de f.

On note : $r = \partial_{1,1}^2(f)(a)$, $t = \partial_{2,2}^2(f)(a)$ et $s = \partial_{1,2}^2(f)(a)$ de sorte que $\nabla^2(f)(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$.

- 1. On note λ_1 et λ_2 les valeurs propres de $\nabla^2(f)(a)$ (non nécessairement distinctes). Montrer que $rt s^2 = \lambda_1 \lambda_2$ et $r + t = \lambda_1 + \lambda_2$.
- 2. En déduire le résultat suivant :
 - Si $rt s^2 > 0$ et r > 0 alors f admet un minimum local en a.
 - Si $rt s^2 > 0$ et r < 0 alors f admet un maximum local en a.
 - Si $rt s^2 < 0$ alors a est un point selle de f.

- 3. Python. Écrire une fonction qui prend en entrée une matrice symétrique 2×2 et qui renvoie la nature du point critique correspondant.
- 4. **Application.** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^3 + 3xy^2 15x 12y$.
 - (a) Montrer que f est \mathscr{C}^2 sur \mathbb{R}^2 et calculer les dérivées partielles premières et secondes.
 - (b) Montrer que f admet quatre points critiques et les déterminer.
 - (c) Sans calculer de valeurs propres, déterminer les extrema locaux de f.

Exercice 20.15 (*** - Équation des ondes en dimension 1 - Oral HEC 2017)

1. Soient a et b deux applications de \mathbb{R} dans \mathbb{R} , de classe \mathscr{C}^{∞} sur \mathbb{R} .

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} telle que, pour tout $(x,y)\in\mathbb{R}^2$,

$$f(x,y) = \frac{1}{2} \left[a(x+y) + a(x-y) + \int_{x-y}^{x+y} b(s) ds \right].$$

Justifier que f est de classe \mathscr{C}^2 sur \mathbb{R}^2 et montrer que $\partial_{1,1}^2(f) - \partial_{2,2}^2(f)$ est l'application nulle.

Pour $x \in \mathbb{R}$, préciser les valeurs de f(x,0) et de $\partial_2(f)(x,0)$.

- 2. Dans cette question, f désigne une application de \mathbb{R}^2 dans \mathbb{R} qui est de classe \mathscr{C}^2 sur \mathbb{R}^2 .
 - (a) Montrer qu'il existe une unique application g de \mathbb{R}^2 dans \mathbb{R} telle que pour tout $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = g(x+y, x-y).$$

Dans la suite, on admettra que l'application g ainsi définie est de classe \mathscr{C}^2 sur \mathbb{R}^2 .

(b) Si g désigne l'application définie au a), montrer que pour tout $(x,y) \in \mathbb{R}^2$,

$$\partial_{1,1}^2(f)(x,y) - \partial_{2,2}^2(f)(x,y) = 4\partial_{1,2}^2(g)(x+y,x-y).$$

- (c) En déduire que si $\partial_{1,1}^2(f) \partial_{2,2}^2(f)$ est l'application nulle et que pour tout $x \in \mathbb{R}$, $f(x,0) = \partial_2(f)(x,0) = 0$, alors f est l'application nulle.
- 3. (a) Montrer qu'il existe une unique application f de \mathbb{R}^2 dans \mathbb{R} qui est de classe \mathscr{C}^2 sur \mathbb{R}^2 telle que $\partial_{1,1}^2(f) \partial_{2,2}^2(f)$ soit l'application nulle et que pour tout $x \in \mathbb{R}$, $f(x,0) = x^2$ et $\partial_2(f)(x,0) = x$, et déterminer cette application.
 - (b) Étudier les extremums de f.

Extrema des fonctions convexes sur \mathbb{R}^n

Exercice 20.16 (★★)

Soit f la fonction définie sur \mathbb{R}^n par :

$$f(x_1,...,x_n) = \sum_{k=1}^n x_k^2 + \left(1 - \sum_{k=1}^n x_k\right)^2.$$

1. Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R}^n et calculer ses dérivées partielles d'ordre 1 et 2.

- 2. Montrer que f admet un unique point critique $a = (a_1, \ldots, a_n)$. On note $A = \nabla^2 f(a) \in \mathcal{M}_n(\mathbb{R})$.
- 3. Déterminer les valeurs propres de A. En déduire que f admet un extremum local en a.
- 4. Montrer que f admet en fait un extremum global en a.

Exercice 20.17 ($\star\star\star$ - QSP HEC 2016)

Soit $p \in \mathbb{N}^*$, E un espace euclidien et $(u_1, \ldots, u_p) \in E^p$.

Montrer que la fonction $f: x \mapsto \sum_{k=1}^{p} ||x - u_k||^2$ admet un minimum global sur E et le calculer.

Exercice 20.18 (★★★ - Méthode du gradient (Oral ESCP 2012))

Soit n un entier, tel que $n \geq 2$. On considère \mathbb{R}^n muni de son produit scalaire canonique noté $\langle \cdot, \cdot \rangle$, de la norme associée notée $\| \cdot \|$, et $A \in \mathcal{M}_n(\mathbb{R})$, symétrique réelle dont les valeurs propres sont toutes strictement positives. On confond vecteur de \mathbb{R}^n et matrice colonne canoniquement associée et on pose, pour tout $X \in \mathbb{R}^n$, $\Phi(X) = {}^t X A X$.

- 1. Soit B un élément de \mathbb{R}^n . Montrer que l'équation AX = B d'inconnue $X \in \mathbb{R}^n$ admet une unique solution qu'on notera R.
- 2. Montrer qu'il existe deux réels α et β strictement positifs tels que pour tout X de \mathbb{R}^n :

$$\alpha ||X||^2 \le \Phi(X) \le \beta ||X||^2.$$

Dans la suite de l'exercice, on pose pour $X \in \mathbb{R}^n : F(X) = \Phi(X) - 2^t BX$.

- 2. (a) Déterminer le gradient ∇F_X et la hessienne $\nabla^2 F_X$ de F en X.
 - (b) Soient X et H deux éléments de \mathbb{R}^n . Montrer que :

$$F(X + H) = F(X) + \langle \nabla F_X, H \rangle + \Phi(H).$$

- (c) En déduire que F possède un minimum sur \mathbb{R}^n . En quel point est-il atteint?
- 3. Soit $X \in \mathbb{R}^n$ fixé, $X \neq 0$. Déterminer $\alpha \in \mathbb{R}$ de façon à ce que $F(X \alpha \nabla F_X)$ soit minimal. Calculer ce minimum.
- 4. Soit $X_0 \in \mathbb{R}^n$. On définit une suite $(X_k)_{k \in \mathbb{N}}$ de vecteurs de \mathbb{R}^n par, pour tout $k \in \mathbb{N}$: $X_{k+1} = X_k \alpha_k \nabla F_{X_k}$, où $\alpha_k = \frac{\|\nabla F_{X_k}\|^2}{2\Phi(\nabla F_{X_k})}$ si $X_k \neq R$ et 0 sinon.
 - (a) Montrer que la suite $(F(X_k))_{k \in \mathbb{N}}$ converge.
 - (b) Exprimer $F(X_{k+1}) F(X_k)$ en fonction de α_k et de ∇F_{X_k} .
- 5. Une suite $(Y_k)_{k\in\mathbb{N}}$ de vecteurs de \mathbb{R}^n sera dite convergente vers un vecteur $Z\in\mathbb{R}^n$ si $\lim_{k\to+\infty}\|Y_k-Z\|=0$, ce qui revient à dire que les coordonnées de Y_k convergent vers les coordonnées correspondantes de Z.
 - (a) Montrer que la suite $(\nabla F_{X_k})_{k\in\mathbb{N}}$ converge vers 0.
 - (b) En déduire la limite de la suite $(X_k)_{k\in\mathbb{N}}$.