ECG2 - Maths approfondies Semaine 16, colle du 05/02/2024 Lycée Louis Pergaud

Colle 1. Yasmine Abdelmagid

Question de cours. Si f est symétrique, une famille de vecteurs propres de f associée à des valeurs propres distinctes est orthogonale.

Exercice 1

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $f(x, y, z) = (x+z^2)e^{x(y^2+z^2+1)}$.

- 1. Montrer que f est \mathscr{C}^1 .
- 2. Montrer que f possède un unique point critique $A \in \mathbb{R}^3$ que l'on déterminera. Calculer f(A).
- 3. Montrer que si $x \ge 0$, alors $f(x, y, z) \ge 0$, et que si $x \le 0$, alors $f(x, y, z) \ge xe^x$.
- 4. Déterminer le minimum de la fonction $x \mapsto xe^x$, et en déduire que f atteint son minimum en A.

Exercice 2

Soit E un espace euclidien et soit f un endomorphisme de E tel que : $\forall x \in E, \langle f(x), x \rangle = 0.$

- 1. Montrer que : $\forall (x,y) \in E^2$, $\langle f(x),y\rangle = -\langle x,f(y)\rangle$.
- 2. Montrer que $Ker(f) = Im(f)^{\perp}$.
- 3. Montrer que si λ est valeur propre de f, alors $\lambda=0$. L'endomorphisme f est-il diagonalisable ?

Colle 2. Tim Moussie

Question de cours. f est symétrique si, et seulement si, sa matrice dans une b.o.n. est symétrique.

Exercice 3

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto x^4 + 2x^2 + y^2 - 4xy + 8x - 4y + 2$.

- 1. Montrer que f est \mathscr{C}^1 et calculer ses dérivées partielles.
- 2. Montrer que f admet exactement trois points critiques : (0,2), et deux autres points notés α et β .

 Justifier que f n'admet pas d'extremum en (0,2) et que $f(\alpha) = f(\beta)$.
- 3. On souhaite étudier la nature des deux points critiques. Pour cela, on cherche à déterminer le signe de $g(x,y) = f(x,y) f(\alpha)$.
 - (a) Soit $x \in \mathbb{R}$ fixé. Montrer que $y \mapsto g(x, y)$ est un polynôme de degré 2, et calculer son discriminant, noté $\Delta(x)$.
 - (b) Montrer que la fonction Δ est de signe constant.
 - (c) Conclure.

Exercice 4

Soient A et B deux matrices de $\mathscr{M}_n(\mathbb{R})$ telles que ${}^tA \times A = {}^tB \times B$.

- 1. Montrer que A et B ont même noyau.
- 2. On suppose B inversible. Montrer qu'il existe une matrice orthogonale U telle que $A = U \times B$.

Colle 3. Ourane Pointelin

Question de cours. Condition nécessaire d'extremum global.

Exercice 5

Soit $m \geq 3$ et soit $A \in \mathcal{M}_m(\mathbb{R})$. On suppose qu'il existe $n \geq 2$ tel que $A^n = {}^tA$.

- 1. Montrer que $A^{n^2} = A$.
- 2. On pose $B = A^{n+1}$. Montrer que B est une matrice symétrique et que $B^n = B$.
- 3. Que peut-on en déduire des valeurs propres de B ?
- 4. On suppose que -1 est valeur propre de B, et soit V un vecteur propre associé. En calculant de deux manières différentes tVBV , montrer qu'on aboutit à une contradiction et donc que -1 n'est pas valeur propre de B.
- 5. Montrer que B est la matrice d'un projecteur orthogonal de \mathbb{R}^m .

Exercice 6

Soit f la fonction définie sur \mathbb{R}^2 par f : $(x,y) \mapsto \frac{-3y}{x^2+y^2+1}$.

- 1. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}^2 et calculer ses dérivées partielles.
- 2. Déterminer les points critiques de f.
- 3. Déterminer les extrema de f.