- DM6

Correction du devoir maison

Exercice 1

1. (a) Par hypothèse, y est deux fois dérivable sur I =]-1,1[. De plus, les fonctions cosinus et sinus sont deux fois dérivables sur $J =]0,\pi[$, et la fonction cosinus restreinte à $]0,\pi[$ est à valeurs dans]-1,1[. Par composition et produit, z est deux fois dérivable sur J. Et pour tout $t \in J$:

$$z'(t) = \cos(t) \cdot y(\cos(t)) + \sin(t)(-\sin(t))y'(\cos(t))$$

$$= \cos(t) \cdot y(\cos(t)) + (\cos^{2}(t) - 1)y'(\cos(t))$$

$$z''(t) = -\sin(t) \cdot y(\cos(t)) - \cos(t)\sin(t)y'(\cos(t)) - 2\sin(t)\cos(t)y'(\cos(t))$$

$$-(\cos^{2}(t) - 1)\sin(t)y''(\cos(t))$$

$$= -\sin(t) \cdot \left(y(\cos(t)) + 3\cos(t)y'(\cos(t)) + (\cos^{2}(t) - 1)y''(\cos(t))\right)$$

(b) y est solution de (E) sur I si y est deux fois dérivable sur I et

$$\forall x \in I, \quad (x^2 - 1)y''(x) + 3xy'(x) - 8y(x) = 2x.$$

Pour tout $x \in]-1,1[$, il existe un unique $t \in]0,\pi[$ tel que $x=\cos(t)$. En remplaçant dans (E), on obtient :

$$(\cos^2(t) - 1)y''(\cos(t)) + 3\cos(t)y'(\cos(t)) - 8y(\cos(t)) = 2\cos(t).$$

Puisque $\sin(t) \neq 0$ pour $t \in]0, \pi[$, cette équation est équivalente à :

$$-\sin(t)(\cos^2(t) - 1)y''(\cos(t)) - 3\sin(t)\cos(t)y'(\cos(t)) + 8\sin(t)y(\cos(t)) = -2\sin(t)\cos(t).$$

En posant $z: t \in J \mapsto \sin(t) \cdot y(\cos(t))$, on en déduit par la question précédente que z est deux fois dérivable sur J. L'égalité précédente est alors équivalente à :

$$z''(t) + 9\sin(t)y(\cos(t)) = z''(t) + 9z(t) = -2\sin(t)\cos(t)$$
 (E')

Ainsi:

$$y$$
 solution de (E) sur $I \Leftrightarrow z$ solution de (E') sur J .

2. L'équation (E') est une équation différentielle linéaire du second ordre à coefficients constants. L'équation homogène associée est

$$z'' + 9z = 0. (E_0)$$

L'équation caractéristique associée est $r^2 + 9 = 0$. Ces deux racines sont r = 3i et r' = -3i. L'ensemble des solutions de (E'_0) est :

$$\{t \in J \mapsto A\cos(3t) + B\sin(3t), A, B \in \mathbb{R}\}.$$

On cherche une solution particulière de (E'). Pour tout $t \in J$:

$$z''(t) + 9z(t) = -2\sin(t)\cos(t) = -\sin(2t) = \frac{e^{-2it} - e^{2it}}{2i}$$

En utilisant le principe de superposition, on se ramène à déterminer des solutions particulières des deux équations suivantes :

$$z'' + 9z = \frac{e^{-2it}}{2i} \tag{E_1'}$$

et

$$z'' + 9z = -\frac{e^{2it}}{2i} \tag{E_2'}$$

Pour (E_1') , -2i n'est pas solution de l'équation caractéristique. On cherche donc une solution de (E_1') sous la forme $z: t \mapsto Ce^{-2it}$ avec $C \in \mathbb{C}$. En remplaçant dans (E_1') , on obtient :

$$-4Ce^{-2it} + 9Ce^{-2it} = \frac{e^{-2it}}{2i},$$

d'où $5C = \frac{1}{2i}$, et $C = -\frac{i}{10}$. Ainsi $z: t \mapsto -\frac{i}{10}e^{-2it}$ est solution de (E'_1) sur J.

Une solution particulière de (E_2') se déduit alors de la solution précédente en considérant $t \mapsto \frac{i}{-\frac{i}{10}e^{-2it}} = \frac{i}{10}e^{2it}$.

Finalement, une solution particulière de (E') sur J est donnée par :

$$t \mapsto -\frac{i}{10}e^{-2it} + \frac{i}{10}e^{2it} = \frac{i}{10}(e^{2it} - e^{-2it}) = -\frac{1}{5}\sin(2t).$$

L'ensemble des solutions de (E') sur J est donc

$$\left\{ t \mapsto A\cos(3t) + B\sin(3t) - \frac{1}{5}\sin(2t), A, B \in \mathbb{R} \right\}.$$

3. On obtient donc par ce qui précède que y est solution de (E) sur I si, et seulement si, il existe $A, B \in \mathbb{R}$ tel que pour tout $t \in J$,

$$\sin(t)y(\cos(t)) = A\cos(3t) + B\sin(3t) - \frac{1}{5}\sin(2t)$$
 (*)

Calculons:

$$\cos(3t) = \cos(2t)\cos(t) - \sin(2t)\sin(t) = \cos^3(t) - \sin^2(t)\cos(t) - 2\sin^2(t)\cos(t)$$

$$= \cos(t)(\cos^2(t) - 3\sin^2(t)) = \cos(t)(4\cos^2(t) - 3)$$

$$\sin(3t) = \sin(2t)\cos(t) + \cos(2t)\sin(t) = 2\sin(t)\cos^2(t) + \cos^2(t)\sin(t) - \sin^3(t)$$

$$= \sin(t)(3\cos^2(t) - \sin^2(t)) = \sin(t)(4\cos^2(t) - 1)$$

$$\frac{1}{5}\sin(2t) = \frac{2}{5}\cos(t)\sin(t)$$

D'où en remplaçant dans (*), on obtient :

$$\sin(t)y(\cos(t)) = A\cos(t)(4\cos^2(t) - 3) + B\sin(t)(4\cos^2(t) - 1) - \frac{2}{5}\cos(t)\sin(t).$$

Puisque $\sin(t) \neq 0$ pour $t \in J$, on obtient :

$$y(\cos(t)) = A \frac{\cos(t)}{\sin(t)} (4\cos^2(t) - 3) + B(4\cos^2(t) - 1) - \frac{2}{5}\cos(t)$$
$$= A \frac{\cos(t)}{\sqrt{1 - \cos^2(t)}} (4\cos^2(t) - 3) + B(4\cos^2(t) - 1) - \frac{2}{5}\cos(t)$$

 $car \sin(t) > 0$ sur J. Alors en prenant $x = \cos(t)$, on obtient finalement:

$$y(x) = A \frac{x}{\sqrt{1-x^2}} (4x^2 - 3) + B(4x^2 - 1) - \frac{2}{5}x.$$

Les solutions de l'équation (E) sont donc les fonctions de la forme :

$$x \in I \mapsto A \frac{x}{\sqrt{1-x^2}} (4x^2 - 3) + B(4x^2 - 1) - \frac{2}{5}x$$

avec $A, B \in \mathbb{R}$.

Exercice 2 (Théorème des deux carrés)

1. (a) Soient $m, n \in \mathscr{E}$. Il existe $(a, b), (c, d) \in \mathbb{N}^2$ tels que $m = a^2 + b^2$ et $n = c^2 + d^2$. Posons u = a + ib et v = c + id. Alors:

$$m \times n = |u|^2 \times |v|^2 = |u \times v|^2 = (ac - bd)^2 + (ad + cb)^2.$$

Donc $m \times n$ appartient à \mathscr{E} , et \mathscr{E} est stable par produit.

- (b) Soit $p \in \mathcal{E}$ impair. Par définition, il existe $(a, b) \in \mathbb{N}^2$ tel que $p = a^2 + b^2$. Faisons une disjonction de cas selon la parité de a et b.
 - Si a et b sont pairs, $a^2 + b^2$ est pair, ce qui est impossible si p est impair.
 - Si a et b sont impairs, a^2 et b^2 est impair, et a^2+b^2 est pair, ce qui est encore impossible si p est impair.
 - S'il existe $k, \ell \in \mathbb{N}$ tel que a = 2k et $b = 2\ell + 1$, alors :

$$p = a^2 + b^2 = 4k^2 + 4\ell^2 + 4\ell + 1 \equiv 1$$
 [4].

Ainsi, si $p \in \mathcal{E}$ est impair, alors $p \equiv 1$ [4].

2. (a) Le cardinal de $[0, \sqrt{n}]^2$ est $(\lfloor \sqrt{n} \rfloor + 1)^2$, et celui de [0, n-1] est n. Mais par définition de la partie entière d'un réel, $\sqrt{n} < \lfloor \sqrt{n} \rfloor + 1$, et par stricte croissance de la fonction carrée sur \mathbb{R}_+ , $n < (\lfloor \sqrt{n} \rfloor + 1)^2$. Ainsi, le cardinal $[0, \sqrt{n}]^2$ est strictement plus grand que celui de [0, n-1].

Considérons l'application $f: [0, \sqrt{n}]^2 \to [0, n-1]$ qui à tout couple $(x, y) \in [0, \sqrt{n}]^2$ associe le reste de la division euclidienne de ax+by par n. Si cette application était injective, $\mathrm{Im}(f)$ serait en bijection avec $[0, \sqrt{n}]^2$, et [0, n-1] contiendrait un sous-ensemble de cardinal $(\lfloor \sqrt{n} \rfloor + 1)^2$ qui est strictement plus grand que n, ce qui est impossible.

Ainsi, f n'est pas une application injective.

(b) Puisque f n'est pas injective, il existe $(x_1, y_1), (x_2, y_2) \in [0, \sqrt{n}]^2$ distincts tels que $f(x_1, y_1) = f(x_2, y_2)$, c'est-à-dire tels que $ax_1 + by_1$ et $ax_2 + by_2$ ont même reste dans la division euclidienne par n. Or, c'est le cas si et seulement si ils sont congrus modulo n, ce qui se récrit :

$$a(x_1 - x_2) + b(y_1 - y_2) \equiv 0 [n].$$

Posons alors $u = x_1 - x_2$ et $v = y_1 - y_2$. Le couple (u, v) est non nul car (x_1, y_1) est distinct de (x_2, y_2) , et tel que n divise au + bv. De plus, puisque $x_1, x_2 \in [0, \sqrt{n}], |u| = |x_1 - x_2| \leq \sqrt{n}$. Mais comme u est un entier et pas \sqrt{n} (car n n'est pas un carré parfait), il suit que $|u| < \sqrt{n}$. De même, $|v| < \sqrt{n}$.

D'où l'existence de $(u,v) \in \mathbb{Z}^2$ tel que $(u,v) \neq (0,0), |u| < \sqrt{n}, |v| < \sqrt{n}$ et n divise au + bv.

- (c) On a obtenu que n divise au + bv. Il divise donc également $(au + bv)(au bv) = a^2u^2 b^2v^2$.
 - Puisque $a^2u^2 b^2v^2 = a^2(u^2 + v^2) (a^2 + b^2)v^2$ et que n divise $a^2 + b^2$, il suit que n divise $a^2(u^2 + v^2)$. De même, on montre que n divise $b^2(u^2 + v^2)$.

D'autre part, puisque a et b sont premiers entre eux, il en est de même de a^2 et b^2 , d'où l'existence de $\alpha, \beta \in \mathbb{Z}$ tels que $\alpha a^2 + \beta b^2 = 1$.

Finalement, *n* divise $\alpha a^2(u^2 + v^2) + \beta b^2(u^2 + v^2) = u^2 + v^2$.

(d) D'après la question précédente, $u^2 + v^2$ est un multiple de n, non nul car $(u, v) \neq (0, 0)$, et strictement plus petit que 2n puisque $|u|, |v| < \sqrt{n}$. Or il n'y a qu'un seul multiple de n strictement compris entre 0 et 2n: c'est n lui-même.

Par conséquent, $n=u^2+v^2$, et n appartient à \mathscr{E} .

3. (a) Soit $x \in [1, p-1]$.

Commençons par l'existence d'un tel entier y. Puisque $x \in [1, p-1]$, x est premier avec p. Il existe donc $(u, v) \in \mathbb{Z}^2$ tel que xu + pv = 1, ce qui donne en passant aux congruences $xu \equiv 1$ [p]. Mais rien ne dit que $u \in [1, p-1]$. Effectuons pour cela la division euclidienne de u par p: il existe q, y des entiers tels que u = qp + y avec $y \in [0, p-1]$. D'où:

$$xy = xu + xqp \equiv xu \equiv 1 [p].$$

Et $y \neq 0$ car $xy \not\equiv 0$ [p].

Vérifions maintenant qu'un tel entier est unique. Soient pour cela $y_1, y_2 \in [1, p-1]$ tels que $xy_1 \equiv 1$ [p] et $xy_2 \equiv 1$ [p]. Alors :

$$y_1 \equiv y_1(xy_2) \equiv (y_1x)y_2 \equiv y_2[p]$$

et donc p divise $y_1 - y_2$. Or $y_1 - y_2$ est un entier compris entre -p + 1 et p - 1. Le seul multiple de p dans cet intervalle d'entiers étant 0, il suit que $y_1 = y_2$.

Ainsi, pour tout $x \in [1, p-1]$, il existe un unique $y \in [1, p-1]$ tel que $xy \equiv 1[p]$.

Notation.

Pour tout $x \in [1, p-1]$, on notera dans la suite inv(x) l'unique élément $y \in [1, p-1]$ tel que $xy \equiv 1[p]$.

(b) La réflexivité et la symétrie de \sim sont immédiates. Soient à présent $x,y,z\in [\![1,p-1]\!]$ tels que $x\sim y$ et $y\sim z$. Si x=y ou y=z, alors $x\sim z$ immédiatement. Sinon, on a $xy\equiv 1\,[p]$ et $yz\equiv 1\,[p]$. Mais par l'unicité établie à la question précédente, $x=\mathrm{inv}(y)=z$, et donc $x\sim z$.

Ainsi, \sim est une relation d'équivalence sur [1, p-1].

(c) Soit $x \in [1, p-1]$, et soit $z \in [1, p-1]$. Alors $z \sim x$ si, et seulement si, z = x ou $xz \equiv 1$ [p], soit encore z = x ou z = inv(x). Ainsi, $\text{cl}(x) = \{x, \text{inv}(x)\}$.

La classe de x est un singleton si, et seulement si, x = inv(x). Or si x = inv(x), alors:

$$x \times x \equiv x \times \mathrm{inv}(x) \equiv 1 [p]$$

de sorte que $p \mid x^2 - 1 = (x - 1)(x + 1)$. Puisque p est premier, on obtient $p \mid x - 1$ ou $p \mid x + 1$, et donc x - 1 = 0 ou x + 1 = p puisque $1 \le x \le p - 1$.

Réciproquement, si x=1, on a bien $1\times 1\equiv 1$ [p], et donc $1=\operatorname{inv}(1)$, de sorte que $\operatorname{cl}(1)=\{1\}$. Et si $x=p-1, \ x\times x\equiv (-1)\times (-1)\equiv 1$ [p].

Finalement, cl(x) est un singleton si, et seulement si, x = 1 ou x = p - 1.

Dans le cas contraire, $cl(x) = \{x, inv(x)\}$ est de cardinal 2.

(d) Rappelons que:

- les classes d'équivalences forment une partition de [1, p-1];
- deux classes d'équivalence sont des singletons, la classe de 1 et la classe de p-1;
- toutes les autres classes d'équivalences sont de cardinal 2, de la forme $cl(x) = \{x, inv(x)\}$. Dans ce cas, le produit de ses éléments satisfait $x \times inv(x) \equiv 1$ [p].

Notons R un système de représentants de ces classes d'équivalence, qui contient donc 1 et p-1. Alors :

$$(p-1)! = 1 \times (p-1) \times \left(\prod_{x \in R \setminus \{1, p-1\}} x \times \operatorname{inv}(x)\right) \equiv 1 \times (-1) \times \left(\prod_{x \in R \setminus \{1, p-1\}} 1\right) \equiv -1 [p].$$

D'où le théorème de Wilson : $(p-1)! \equiv -1 [p]$.

Remarque. Le théorème de Wilson est encore valable lorsque p=2, puisqu'alors (p-1)!=1 et $-1\equiv 1$ [2]. De plus, la réciproque est vraie : si $p\geq 2$ satisfait $(p-1)!\equiv -1$ [p], alors il existe $k\in\mathbb{Z}$ tel que kp-(p-1)!=1, et donc p est premier avec tous les entiers compris entre 2 et p-1. Il n'admet donc aucun diviseurs positifs autres que 1 et lui-même. Donc p est premier.

(e) Remarquons tout d'abord que :

$$\prod_{k=1}^{m} k(p-k) = \left(\prod_{k=1}^{m} k\right) \times \left(\prod_{k=1}^{m} (p-k)\right)$$
$$= 1 \times \dots \times \left(\frac{p-1}{2}\right) \times \left(\frac{p+1}{2}\right) \times \dots \times (p-1)$$
$$= (p-1)! \equiv -1 [p].$$

D'autre part:

$$\prod_{k=1}^{m} k(p-k) = \left(\prod_{k=1}^{m} k\right) \times \left(\prod_{k=1}^{m} (p-k)\right)$$

$$\equiv m! \times \left(\prod_{k=1}^{m} (-k)\right) [p]$$

$$\equiv (-1)^{m} m! \times \left(\prod_{k=1}^{m} k\right) [p]$$

$$\equiv (-1)^{m} (m!)^{2} [p]$$

Et donc:

$$(m!)^2 \equiv (-1)^{m+1} [p].$$

(f) Si $p \equiv 1$ [4], alors $m = \frac{p-1}{2}$ est un entier pair, et donc $(m!)^2 \equiv (-1)^{m+1} \equiv -1$ [p]. Par conséquent, p divise $(m!)^2 + 1$.

On se retrouve alors dans la situation de la question 2 : m! et 1 sont premiers entre eux, et p n'est pas un carré parfait puisque p est premier. Par la question 2.(d), p appartient à \mathscr{E} .

- 4. Soit $n \in \mathbb{N}^*$. Procédons par double implication.
 - \Leftarrow Supposons que $v_p(n)$ est pair pour tout $p \in \mathbb{P}$ congru à 3 modulo 4. Pour tout $p \in \mathbb{P}$:
 - si $p \equiv 3$ [4], $p^{v_p(n)}$ est un carré puisque $v_p(n)$ est pair, et donc appartient à \mathscr{E} (prendre $a = p^{v_p(n)/2}$ et b = 0 par exemple);
 - si $p \equiv 1$ [4], alors $p \in \mathscr{E}$ par la question 3.(f), et donc $p^{v_p(n)}$ aussi car \mathscr{E} est stable par produit;
 - si p=2, alors $p=1^2+1^2\in\mathscr{E}$, et donc $2^{v_2(n)}\in\mathscr{E}$ toujours parce que \mathscr{E} est stable par produit

Par stabilité de $\mathscr E$ par produit, $n=\prod_{p\in \mathbb P} p^{v_p(n)}$ appartient à $\mathscr E.$

 \Rightarrow Supposons que $n \in \mathbb{N}^*$ appartient à \mathscr{E} .

Si n est un carré parfait, ses valuations p-adiques sont paires pour tout $p \in \mathbb{P}$, donc en particulier pour tout $p \in \mathbb{P}$ congru à 3 modulo 4.

Supposons à présent que n ne soit pas un carré parfait. Il existe $a, b \in \mathbb{N}^*$ tels que $n = a^2 + b^2$. Notons alors $d = a \wedge b$ et $a', b' \in \mathbb{N}$ premiers entre eux tels que a = da' et b = db'. Alors :

$$n = a^2 + b^2 = d^2(a'^2 + b'^2).$$

Puisque d^2 est un carré parfait, ses valuations p-adiques sont toutes paires. On est donc ramené à étudier les valuations p-adiques de $a'^2 + b'^2$.

Soit $p \in \mathbb{P}$ un diviseur de $a'^2 + b'^2$. On est dans le cadre d'application de la question 2:a' et b' sont premiers entre eux, et p n'est pas un carré parfait car p est premier. Par conséquent, p appartient à \mathscr{E} par la question 2.(d), et $p \equiv 1$ [4] par la question 1.(b).

On peut à présent conclure : si p est un nombre premier congru à 3 modulo 4, alors $p \nmid (a'^2 + b'^2)$ (puisque $p \not\equiv 1 \, [4]$), et donc $v_p(a'^2 + b'^2) = 0$. Ainsi :

$$v_p(n) = v_p(d^2) + v_p(a'^2 + b'^2) = 2v_p(d) \in 2\mathbb{N}.$$

On en déduit le théorème des deux carrés :

Un entier $n \in \mathbb{N}^*$ est la somme de deux carrés parfaits si, et seulement si, $v_p(n)$ est pair pour tout $p \in \mathbb{P}$ congru à 3 modulo 4.