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oin type A, they are in Schur-Weyl duality with elliptic Cherednik algebras, |
e the quantum affine algebra is a subalgebra of the quantum toroidal algebra, Crystal M, for Uq(§/4)

e quantum toroidal algebras have a “coproduct” which involves infinite sums

(Drinfeld coproduct). Theorem [m14] Specializing g at a particular root of unity in the representations

Vi(a), we get irreducible finite-dimensional representations by taking a quotient.
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\_ algebras representations of quantum toroidal algebras at roots of unity.
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Geometry Conformal field theory Combinatoric

Motivation The extremal representations are related to tensor products of

State of art no example of finite-dimensional representations were known until highest weight representations and lowest weight representations [Kashiwara 94].
very recently.

Theorem [M 13]

e Process of tensor products of ¢-highest weight representations and /-lowest
weight representations of U, (s/>%;).

Aim of my works

: . . . . . e \We recover the vector representation Vi(a).
Aim Construct finite-dimensional representations of quantum toroidal algebras of P 1(2)

type A at roots of unity. We have three different constructions: Proof Drinfeld coproduct and related methods [Hernandez 07].

e construction via monomial crystals,

Theorem [M 13]

e construction by fusion products . . .
Y P ’ o We get extremal loop weight representations as subquotients of ). Vi(a;).

e construction via the affinization algebra (/) of type A

e We obtain new finite-dimensional representations at roots of unity.

Extremal representations of Kashiwara Third construction

Facts The extremal fundamental representations:

® are representations V; of Z/{q(SA/ 1) (£ =1,...,n) with crystal bases B, quotient \Q
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e are isomorphic to the global Weyl modules [Chari, Pressley 00],
e admit an irreducible quotient of finite dimension [Kashiwara 02]. Conjecture [Hemnandez 11] Relation between the g-character of representations of

. tor
Idea Extend the action of the quantum affine Uy(slc) and the one of representations of Uy(sh,7;).

algebra on V/ to an action of the quantum toroidal Ug(sln11) End( Vi) Theorem [M 13-1]
tor

algebra: the representations of {/,(s/>%;) hence P o Construction of (-extremal representations V(a) for ,(5lu.).

obtained should have finite-dimensional quotients. Uq(s1:57) o Proof of the conjecture: we recover the representations Vy(a) of Uy(s/’Y;).
First construction Perspectives

Facts e Construction of finite-dimensional representations for quantum toroidal algebras

e Crystal bases 5, can be realized by monomial crystals M [Hernandez, Nakajima 06]. of general type.

e Monomials occuring in these crystals appear also in the theory of g-characters of| ¢ Classification of irreducible finite-dimensional representations of quantum

Aim Construct a representation of U,(s/!%;) satisfying the following properties: e Description of finite-dimensional representations of elliptic Cherednik algebras at

e its g-character is the sum of monomials in M, roots of unity by Schur-Weyl duality.

e its restriction to the quantum affine subalgebra is V/.
Theorem [M 14] Such a representation exists if and only if References
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Remark The extremal loop weight representations V;(a), also called vector
representations, are used in [Feigin, Jimbo, Miwa, Mukhin 13].
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