Representations of quantum toroidal algebras Mathieu MANSUY University of Bologna

Quantum toroidal algebras

Construction

• Affinizations of Lie algebras:

$$\mathfrak{g} \longrightarrow \mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \longrightarrow \mathbb{C}[s^{\pm 1}, t^{\pm 1}] \otimes \mathfrak{g}$$

Simple Lie algebra

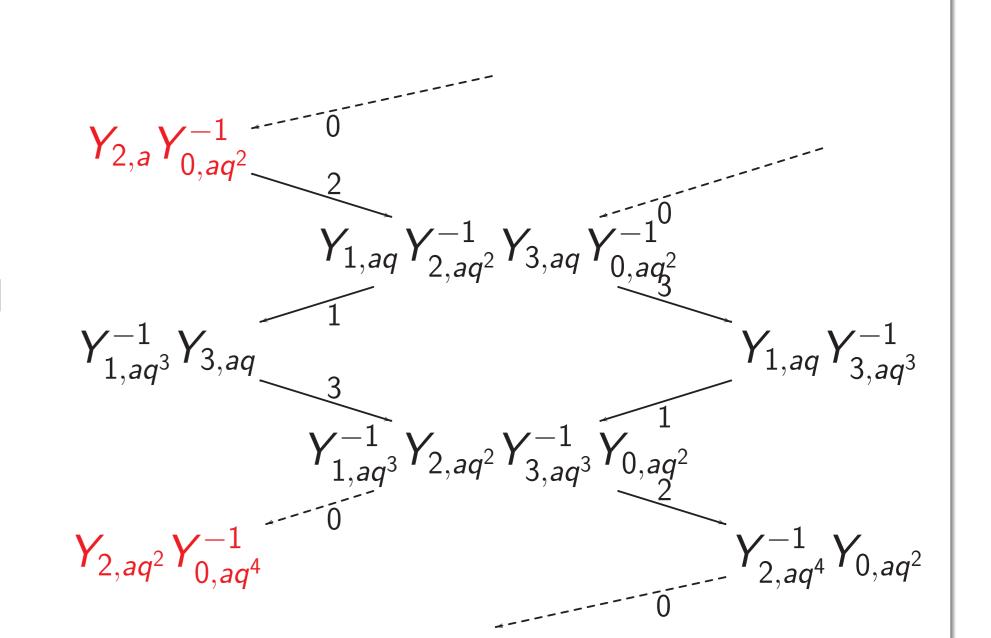
Loop algebra Double loop algebra

• Affinizations of quantum groups:

 $\mathcal{U}_q(\mathfrak{g}) \xrightarrow{\text{affinization}} \mathcal{U}_q(\hat{\mathfrak{g}}) \xrightarrow{\text{affinization}} \mathcal{U}_q(\mathfrak{g}^{tor})$ Quantum group Quantum affine algebra Quantum toroidal algebra

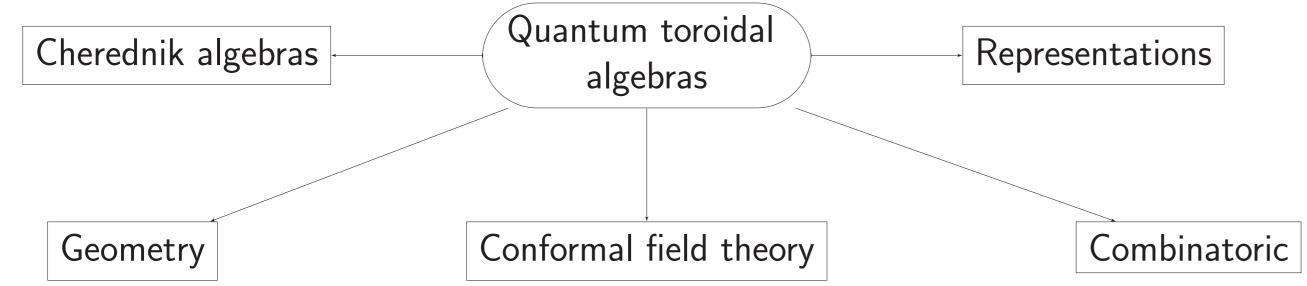
Properties Some fundamental elements about quantum toroidal algebras:in type A, they are in Schur-Weyl duality with elliptic Cherednik algebras,

Remark The monomial crystals \mathcal{M}_{ℓ} admit shift automorphisms. This is related to the existence of finite-dimensional representations of quantum toroidal algebras at roots of unity.



In type A, they are in Schul-Weyl duality with emptic Cherednik algebras,
the quantum affine algebra is a subalgebra of the quantum toroidal algebra,
quantum toroidal algebras have a "coproduct" which involves infinite sums (Drinfeld coproduct).

Motivations



State of art no example of finite-dimensional representations were known until very recently.

Aim of my works

Aim Construct finite-dimensional representations of quantum toroidal algebras of type A at roots of unity. We have three different constructions:

- construction via monomial crystals,
- construction by fusion products,

• construction via the affinization algebra $\mathcal{U}_q(\hat{sl}_\infty)$ of type A_∞ .

Crystal \mathcal{M}_2 for $\mathcal{U}_q(\hat{sl}_4)$

Theorem [M 14] Specializing q at a particular root of unity in the representations $V_{\ell}(a)$, we get irreducible finite-dimensional representations by taking a quotient.

Finite-dimensional representations

Remark This is the first systematic construction of finite-dimensional representations of quantum toroidal algebras at roots of unity.

Second construction

Motivation The extremal representations are related to tensor products of highest weight representations and lowest weight representations [Kashiwara 94].

Theorem [M 13]

• Process of tensor products of ℓ -highest weight representations and ℓ -lowest weight representations of $\mathcal{U}_q(sl_{n+1}^{tor})$.

• We recover the vector representation $V_1(a)$.

Proof Drinfeld coproduct and related methods [Hernandez 07].

Theorem [M 13]

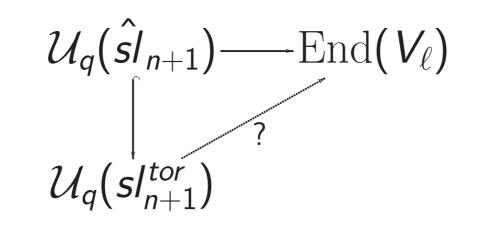
• We get extremal loop weight representations as subquotients of $\bigotimes_i V_1(a_i)$.

• We obtain new finite-dimensional representations at roots of unity.

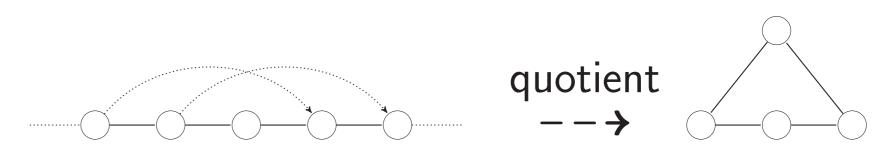
Extremal representations of Kashiwara

Facts The extremal fundamental representations: • are representations V_{ℓ} of $\mathcal{U}_q(\hat{sl}_{n+1})$ ($\ell = 1, ..., n$) with crystal bases \mathcal{B}_{ℓ} , • are isomorphic to the global Weyl modules [Chari, Pressley 00], • admit an irreducible quotient of finite dimension [Kashiwara 02].

Idea Extend the action of the quantum affine algebra on V_{ℓ} to an action of the quantum toroidal algebra: the representations of $\mathcal{U}_q(sl_{n+1}^{tor})$ hence obtained should have finite-dimensional quotients.



Third construction



Conjecture [Hernandez 11] Relation between the *q*-character of representations of $\hat{\mathcal{U}}_q(\hat{sl}_\infty)$ and the one of representations of $\mathcal{U}_q(sl_{n+1}^{tor})$.

Theorem [M 13-1]

- Construction of ℓ -extremal representations $V_{\ell}^{\infty}(a)$ for $\mathcal{U}_{q}(\hat{sl}_{\infty})$.
- Proof of the conjecture: we recover the representations $V_{\ell}(a)$ of $\mathcal{U}_q(sl_{n+1}^{tor})$.

Perspectives

First construction

Facts

- Crystal bases \mathcal{B}_ℓ can be realized by monomial crystals \mathcal{M}_ℓ [Hernandez, Nakajima 06].
- Monomials occuring in these crystals appear also in the theory of q-characters of quantum toroidal algebras [Frenkel, Reshetikhin 99].

Aim Construct a representation of $\mathcal{U}_q(sl_{n+1}^{tor})$ satisfying the following properties:

- Construction of finite-dimensional representations for quantum toroidal algebras of general type.
- Classification of irreducible finite-dimensional representations of quantum toroidal algebras at roots of unity.
- Description of finite-dimensional representations of elliptic Cherednik algebras at

• its *q*-character is the sum of monomials in \mathcal{M}_{ℓ} , • its restriction to the quantum affine subalgebra is V_{ℓ} .

Theorem [M 14] Such a representation exists if and only if ℓ is one of the nodes 1, r + 1, n of the Dynkin diagram, where n = 2r + 1 is odd. It is denoted by $V_{\ell}(a)$ with $a \in \mathbb{C}^*$ and is called extremal loop weight representation.

Remark The extremal loop weight representations $V_1(a)$, also called vector representations, are used in [Feigin, Jimbo, Miwa, Mukhin 13].

0 1 (r+1) n

roots of unity by Schur-Weyl duality.

References

[M 14] Mathieu Mansuy. *Quantum extremal loop weight modules and monomial crystals*, Pacific Journal of Mathematics, Vol. 267 (2014), No. 1, 185-241.

[M 13] Mathieu Mansuy. *Extremal loop weight modules and tensor products for quantum toroidal algebras*, Preprint arXiv:1305.3481, 2013.

[M 13-1] Mathieu Mansuy. Quantum extremal loop weight modules for $U_q(\hat{sl}_{\infty})$, Preprint arXiv:13094298, 2013.

