- DM11

Correction du devoir maison

Suite des noyaux et images itérés

I. Étude d'un exemple

Considérons le \mathbb{R} -espace vectoriel \mathbb{R}^3 , $\mathcal{B} = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $u \in \mathcal{L}(\mathbb{R}^3)$ défini par :

$$u(e_1) = 0$$
 , $u(e_2) = e_1 + 2e_2 + 3e_3$, $u(e_3) = e_1$.

- 1. Tout d'abord, rappelons qu'une telle application linéaire u existe et est unique (cours définition d'une application linéaire par l'image d'une base).
 - k = 0. Alors $u^0 = Id_E$, et $N_0 = Ker(Id_E) = \{0_E\}$, $I_0 = Im(Id_E) = E$.
 - k=1. On détermine $N_1=Ker(u)$ pour commencer : soit $x=ae_1+be_2+ce_3\in\mathbb{R}^3$, on a :

$$u(x) = 0_E \Leftrightarrow b(e_1 + 2e_2 + 3e_3) + ce_1 = 0_E$$

$$\Leftrightarrow (b+c)e_1 + 2be_2 + 3be_3 = 0_E$$

$$\Leftrightarrow \begin{cases} (b+c) = 0 \\ 2b = 0 \\ 3b = 0 \end{cases}$$
par liberté de la famille (e_1, e_2, e_3)

$$\Leftrightarrow b = c = 0$$

Ainsi, on a $Ker(u) = \{ae_1, a \in \mathbb{R}\} = Vect(e_1)$.

On détermine à présent Im(u). D'après le cours, on a :

$$Im(u) = Vect(u(e_1), u(e_2), u(e_3)) = Vect((e_1 + 2e_2 + 3e_3), e_1).$$

Enfin une base de N_1 est donnée par (e_1) (un vecteur non nul donc libre, et génératrice), et une base de I_1 est donnée par $((e_1 + 2e_2 + 3e_3), e_1)$ (deux vecteurs non colinéaires donc famille libre, et génératrice).

• k = 2. On a:

$$u^{2}(e_{1}) = 0_{E}, \quad u^{2}(e_{2}) = u(e_{1} + 2e_{2} + 3e_{3}) = 2(e_{1} + 2e_{2} + 3e_{3}) + 3e_{1} = 5e_{1} + 4e_{2} + 6e_{3}, \quad u^{2}(e_{3}) = 0_{E}.$$

Déterminons maintenant $N_2 = Ker(u^2)$. Soit $x = ae_1 + be_2 + ce_3 \in \mathbb{R}^3$, on a :

$$u^2(x) = 0_E \Leftrightarrow b(5e_1 + 4e_2 + 6e_3) = 0_E$$

 $\Leftrightarrow b = 0 \text{ car } 5e_1 + 4e_2 + 6e_3 \neq 0_E \text{ car cette famille est libre !}$

Ainsi, on a $Ker(u) = \{ae_1 + ce_3, a, c \in \mathbb{R}\} = Vect(e_1, e_3).$

Déterminons $I_2 = Im(u^2)$:

$$Im(u^2) = Vect(u^2(e_1), u^2(e_2), u^2(e_3)) = Vect(5e_1 + 4e_2 + 6e_3).$$

Enfin une base de N_2 est donnée par (e_1, e_3) et une base de I_2 est donnée par $(5e_1+4e_2+6e_3)$.

• $k \ge 3$. On a:

$$u^{3}(e_{1}) = 0_{E}, \quad u^{3}(e_{2}) = u(5e_{1} + 4e_{2} + 6e_{3}) = 4(e_{1} + 2e_{2} + 3e_{3}) + 6e_{1} = 2(5e_{1} + 4e_{2} + 6e_{3}), \quad u^{2}(e_{3}) = 0_{E}.$$

On montre alors de même que précédemment que $N_3 = Vect(e_1, e_3)$ et $I_3 = Vect(5e_1 + 4e_2 + 6e_3)$.

Plus généralement, on montre par récurrence que pour tout $k \geq 3$:

$$u^{k}(e_1) = 0_E$$
, $u^{k}(e_2) = 2^{k-2}(5e_1 + 4e_2 + 6e_3)$, $u^{k}(e_3) = 0_E$,

et que $N_k = Vect(e_1, e_3)$ et $I_k = Vect(5e_1 + 4e_2 + 6e_3)$.

2. On a déjà que $\dim(N_2) = 2$ et $\dim(I_2) = 1$, donc $\dim(N_2) + \dim(I_2) = 3$. Soit à présent $x \in I_2 \cap N_2$. Alors il existe $(\lambda, \mu, \nu) \in \mathbb{R}^2$ tels que :

$$x = \lambda e_1 + \mu e_3 = \nu (5e_1 + 4e_2 + 6e_3)$$

Alors:

$$(\lambda - 5\nu)e_1 + (-4\nu)e_2 + (\mu - 6\nu)e_3 = 0_E$$

Puisque la famille (e_1,e_2,e_3) est libre, on en déduit $\begin{cases} \lambda-5\nu=0\\ -4\nu=0 \end{cases} \Leftrightarrow \lambda=\mu=\nu=0. \text{ Ainsi}\\ \mu-6\nu=0 \end{cases}$

 $x=0_E$ et on a montré que $N_2\cap I_2=\{0_E\}$ (l'inclusion $N_2\cap I_2\supset\{0_E\}$ étant immédiate). Finalement on a bien que :

$$E=N_2\oplus I_2.$$

3. On a $N_2 = Vect(e_1, e_3)$, et $u(e_1) = 0_E$, $u(e_3) = e_1$. Ainsi $u(N_2) \subset N_2$ et la restriction de u à N_2 est bien un endomorphisme de N_2 . Il est de plus nilpotent puisqu'on a $u^2(e_1) = 0_E = u^2(e_3)$. Comme enfin $u(e_3) = e_1 \neq 0_E$, son indice de nilpotence est 2.

On a vu que $I_2 = Vect(5e_1 + 4e_2 + 6e_3)$ et que $u(5e_1 + 4e_2 + 6e_3) = 2(5e_1 + 4e_2 + 6e_3)$. Donc la restriction de u à I_2 est bien une homothétie de rapport 2.

II. Monotonie

Rappel. Un sous-espace vectoriel F d'un espace vectoriel E est **stable par** $u \in \mathcal{L}(E)$ si $u(F) \subset F$.

Important. Lorsqu'un sous-espace vectoriel F est stable par $u \in \mathcal{L}(E)$, u induit un endomorphisme de F. Il est souvent très utile de considérer cet endomorphisme induit!

1. On va montrer le résultat général suivant (Exercice 7 de la feuille de TD20) :

Propriété. Soit $f, g \in \mathcal{L}(E)$ des endomorphismes qui commutent, c'est à dire $f \circ g = g \circ f$. Alors Ker(f) et Im(f) sont stables par g.

Preuve.

• $g(Ker(f)) \subset Ker(f)$. Soit $x \in Ker(f)$, on a:

$$f(x) = 0_E \Rightarrow g(f(x)) = 0_E \Rightarrow f(g(x)) = 0_E.$$

Ainsi on a bien $g(x) \in Ker(f)$.

• $g(Im(f)) \subset Im(f)$. Soit $y \in Im(f)$, il existe $x \in E$ tel que y = f(x). Alors on a :

$$g(y) = g(f(x)) = f(g(x)) \in Im(f).$$

Le résultat s'en suit immédiatement : en effet pour tout $k \in \mathbb{N}$, $N_k = Ker(u^k)$ et $I_k = Im(u^k)$ et u^k et u commutent bien. D'où le résultat par la propriété précédente.

2. • $N_k \subset N_{k+1}$. Soit $x \in N_k$, on a $u^k(x) = 0_E$. Alors en composant par u:

$$u^{k+1}(x) = u(u^k(x)) = u(0_E) = 0_E.$$

Ainsi on a bien $x \in N_{k+1}$.

• $I_{k+1} \subset I_k$. Soit $y \in I_{k+1}$, alors il existe $x \in E$ tel que $y = u^{k+1}(x)$. Mais alors on a :

$$y = u^k(u(x)) \in Im(u^k).$$

Ainsi on a bien $y \in I_k$.

- 3. Montrons par récurrence que pour tout entier naturel $k, N_p = N_{p+k}$.
 - La propriété est vraie pour k = 0 et k = 1 (par hypothèse).
 - Soit $k \ge 1$ et supposons la propriété au rang k vraie, c'est à dire $N_p = N_{p+k}$. Puisqu'on a :

$$N_p \subset N_{p+1} \subset \cdots \subset N_{p+k}$$
,

on en déduit que $N_p = N_{p+1} = \cdots = N_{p+k}$.

Par la question précédente, on a déjà que $N_{p+k} \subset N_{p+k+1}$. Soit à présent $x \in N_{p+k+1}$. On a ·

$$u^{p+k+1}(x) = 0_E \Rightarrow u^{p+k}(u(x)) = 0_E.$$

Ainsi on a $u(x) \in Ker(u^{p+k}) = Ker(u^{p+k-1})$ et donc :

$$u^{p+k-1}(u(x)) = 0_E \Rightarrow u^{p+k}(x) = 0_E.$$

Finalement on a bien $x \in Ker(u^{p+k})$ et donc $N_{p+k} \supset N_{p+k+1}$. D'où la propriété au rang k+1.

On conclut par principe de récurrence.

- 4. Montrons par récurrence que pour tout entier naturel k, $I_q = I_{q+k}$.
 - La propriété est vraie au rang k = 0 et k = 1 (par hypothèse).
 - Soit $k \ge 1$ et supposons la propriété au rang k vraie, c'est à dire $I_q = I_{q+k}$. Puisque :

$$I_{q+k} \subset I_{q+k-1} \subset \cdots \subset I_q$$
,

alors on a $I_{q+k} = I_{q+k-1} = \dots = I_q$.

Montrons que $I_{q+k+1}=I_{q+k}$. On a déjà l'inclusion $I_{q+k+1}\subset I_{q+k}$ par une question précédente. Montrons l'inclusion réciproque : soit $z\in I_{q+k}$, il existe donc $x\in E$ tel que $z=u^{q+k}(x)=u(u^{q+k-1}(x))$. Or $u^{q+k-1}(x)$ appartient à I_{q+k-1} , qui est égal à I_{q+k} par hypothèse. Donc il existe $y\in E$ tel que $u^{q+k-1}(x)=u^{q+k}(y)$. Ainsi on a bien :

$$z = u(u^{q+k-1}(x)) = u(u^{q+k}(y)) = u^{q+k+1}(y) \in I_{q+k+1}.$$

D'où finalement l'inclusion $I_{q+k+1} \supset I_{q+k}$, et donc la propriété au rang k+1.

On conclut par principe de récurrence.

III. En dimension finie

1. La suite des dimensions (n_k) est une suite d'entiers naturels croissante d'après II.2., et majorée par $n = \dim(E)$. Elle est donc constante à partir d'un certain rang, et il existe $s \in \mathbb{N}$ tel que $n_s = n_{s+1}$. Dès lors on a :

$$\begin{cases} n_s = n_{s+1} \\ N_s \subset N_{s+1} \end{cases} \Rightarrow N_s = N_{s+1}.$$

Considérons p le plus petit entier tel que $N_p = N_{p+1}$ (un tel entier existe car $A = \{k \in \mathbb{N}/N_k = N_{k+1}\}$ est une partie non vide (contient s) de \mathbb{N}). Alors on a :

- $\forall k \in [[0, p-1]], N_k \neq N_{k+1}$ par définition de p.
- $\forall k \in \mathbb{N}$, $k \ge p \Rightarrow N_k = N_{k+1}$ grâce à la question II.3.
- 2. La suite des dimensions (i_k) est une suite d'entiers naturels décroissante d'après II.2.. Elle est donc constante à partir d'un certain rang, et il existe $t \in \mathbb{N}$ tel que $i_t = i_{t+1}$. Dès lors on a :

$$\begin{cases} i_t = i_{t+1} \\ I_{t+1} \subset I_t \end{cases} \Rightarrow I_t = I_{t+1}.$$

Considérons q le plus petit entier tel que $I_q = I_{q+1}$. Alors on a :

- $\forall k \in [|0, q 1|], \quad I_k \neq I_{k+1} \text{ par définition de } q.$
- $\forall k \in \mathbb{N}, \quad k \geq q \Rightarrow I_k = I_{k+1}$ grâce à la question II.4.
- 3. Par le théorème du rang appliqué à u^k , on a :

$$\dim(E) = rg(u^k) + \dim(Ker(u^k)) \Rightarrow n = i_k + n_k.$$

Or la suite (i_k) est strictement décroissante puis constante à partir du rang q, (n_k) est strictement croissante puis constante à partir du rang p. Comme enfin $\forall k \in \mathbb{N}, i_k = n - n_k$, on a bien que p = q.

Enfin comme $0 = n_0 < n_1 < \cdots < n_p \le n$, on a :

$$n = n_p - n_0 = (\underbrace{n_p - n_{p-1}}_{\geq 1}) + (\underbrace{n_{p-1} - n_{p-2}}_{\geq 1}) + \dots + (\underbrace{n_1 - n_0}_{\geq 1}) \geq p.$$

4. On a déjà par le théorème du rang (appliqué à u^p que $\dim(E) = \dim(N_p) + \dim(I_p)$.

Montrons que $N_p \cap I_p = \{0_E\}$. Soit $y \in N_p \cap I_p$. Il existe $x \in E$ tel que $y = u^p(x)$. Alors on a :

$$u^p(y) = 0_E \quad \Rightarrow \quad u^{2p}(x) = 0_E.$$

Donc x appartient à $Ker(u^{2p})$, qui est égal à $Ker(u^p)$ par définition de p. On obtient :

$$y = u^p(x) = 0_E.$$

Ainsi $N_p \cap I_p = \{0_E\}$, et on a bien :

$$E = N_p \oplus I_p$$
.

5. On sait déjà que u induit des endomorphismes sur N_p et I_p (car ces s.e.v sont stables par u).

Considérons la restriction \tilde{u} de u à N_p . Alors pour tout $x \in N_p$, $\tilde{u}^p(x) = u^p(x) = 0_E$. Ainsi \tilde{u} est un endomorphisme nilpotent. Comme de plus $N_{p-1} \subsetneq N_p$, alors il existe $x \in N_p \setminus N_{p-1}$, et on a $\tilde{u}^{p-1}(x) = u^{p-1}(x) \neq 0_E$. Donc l'indice de nilpotence de \tilde{u} est p.

Considérons la restriction \bar{u} de u à I_p . Montrons que \bar{u} est un automorphisme de I_p . Comme on est en dimension finie, il suffit de montrer que \bar{u} est injective. Soit donc $x \in I_p$ tel que $\bar{u}(x) = 0_E$. Alors on a :

$$u(x) = 0_E \quad \Rightarrow \quad x \in Ker(u).$$

Ainsi on a $x \in N_1 \cap I_p$. Or on a vu que $N_1 \subset N_p$, donc $x \in N_p \cap I_p = \{0_E\}$. On a donc bien $x = 0_E$, et \bar{u} est bien un automorphisme de I_p .

Remarque. Dans la deuxième partie de cette question, on a procédé comme dans la preuve du théorème du rang.

6. (a) Par le théorème du rang appliqué à u^k , on a $n=i_k+n_k$ pour tout $k\in\mathbb{N}$. Ainsi, on obtient .

$$\delta_k = i_k - i_{k+1} = (n - n_k) - (n - n_{k+1}) = n_{k+1} - n_k.$$

(b) On a montré que $I_{k+1} \subset I_k$. De plus I_k est de dimension finie. Par le cours, on obtient l'existence d'un supplémentaire D_k de I_{k+1} dans I_k :

$$I_k = I_{k+1} \oplus D_k$$
.

En prenant les dimensions, on obtient $\dim(D_k) = i_k - i_{k+1} = \delta_k$.

(c) On a $I_{k+1} = u(I_k) = u(I_{k+1} + D_k) = u(I_{k+1}) + u(D_k) = I_{k+2} + u(D_k)$. Justifions la troisième égalité, en montrant que si $u \in \mathcal{L}(E)$ et F, G sont des sous-espaces vectoriels de E, alors :

$$u(F+G) = u(F) + u(G).$$

En effet pour $z \in E$, on a :

$$z \in u(F+G) \Leftrightarrow \exists x \in (F+G), z = u(x)$$

$$\Leftrightarrow \exists (x_1, x_2) \in F \times G, z = u(x_1 + x_2)$$

$$\Leftrightarrow \exists (x_1, x_2) \in F \times G, z = u(x_1) + u(x_2)$$

$$\Leftrightarrow z \in u(F) + u(G)$$

(d) En prenant les dimensions on a :

$$\dim(I_{k+1}) = \dim(I_{k+2} + u(D_k)) \le \dim(I_{k+2}) + \dim(u(D_k)) \le \dim(I_{k+2}) + \dim(D_k).$$

Ainsi, on obtient $\delta_{k+1} = i_{k+1} - i_{k+2} \le \dim(D_k) = \delta_k$. Ceci étant vrai pour tout $k \in \mathbb{N}$, on en déduit que (δ_k) est décroissante.

(e) Soit u un endomorphisme nilpotent, et p son indice de nilpotence. On a alors:

$$\{0_E\} = N_0 \subset N_1 \subset \cdots \subset N_p = E.$$

De plus, on a montré que ces inclusions sont strictes : en effet s'il existe $0 \le k \le p-1$ tel que $N_k = N_{k+1}$, alors $N_k = N_p = E$ et $u^k = 0$, ce qui contredirait le fait que p soit l'indice de nilpotence de u. L'indice de nilpotence de u est donc également l'entier p à partir duquel la suite des noyaux itérés est constante.

Par ce qu'on a fait, on a déjà que $p \le n$ (on retrouve ici un résultat déjà obtenu dans le TD20 - Exercice 29).

On sait que (δ_k) est décroissante, et que $\delta_0 = \dim(Ker(u)) = 1$. Donc pour tout $k \in \mathbb{N}$, on a $\delta_k \leq 1$. Comme de plus pour tout $0 \leq k \leq p-1$, on a $\delta_k > 0$ (la suite des noyaux itérés est strictement décroissante entre $0 \leq k \leq p-1$) et que $\delta_k = 0$ si $k \geq p$ (la suite des noyaux itérée est constante pour $k \geq p$), on en déduit que :

$$\delta_k = \begin{cases} 1 & \text{si } 0 \le k \le p - 1 \\ 0 & \text{si } k \ge p. \end{cases}$$

Finalement, on a:

$$n = n_p = n_p - n_0 = (n_p - n_{p-1}) + (n_{p-1} - n_{p-2}) + \dots + (n_1 - n_0)$$

= $\delta_{p-1} + \delta_{p-2} + \dots + \delta_0 = p$

L'indice de nilpotence de u est donc n.

III. Cas de la dimension quelconque (facultatif)

- 1. Dans cette question on considère $E = \mathbb{K}^{\mathbb{N}}$ l'espace vectoriel des suites réelles ou complexes. On note une suite $u = (u_n)$ sous la forme d'une liste infinie $u = (u_0, u_1, u_2, \dots)$.
 - (a) On considère l'application $R: \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}$ suivante, appelée shift à droite :

$$R: u = (u_n) \mapsto R(u) = (0, u_0, u_1, u_2, \dots).$$

On vérifie sans difficulté que R est une application linéaire injective (montrez le !). On sait alors (cours sur les applications, ou on le vérifie directement) que R^k est aussi une application linéaire injective. Ainsi $N_k = Ker(R^k) = \{0_{\mathbb{K}^{\mathbb{N}}}\}$ pour tout $k \in \mathbb{N}$ et la suite (N_k) est constante.

Regardons I_k pour $k \in \mathbb{N}$:

$$I_k = \{R^k(u)/u \in \mathbb{K}^{\mathbb{N}}\} = \{\underbrace{(0, \dots, 0, u_0, u_1, \dots)/u_i \in \mathbb{K}}_{k \text{ fois}}\}$$
$$= \{u \in \mathbb{K}^{\mathbb{N}}/u_0 = u_1 = \dots = u_{k-1} = 0\}.$$

La suite (I_k) est bien strictement décroissante pour l'inclusion.

(b) On regarde maintenant l'application $L: \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}$ suivante, appelée shift à qauche :

$$L: u = (u_n) \mapsto R(u) = (u_1, u_2, u_3, \dots).$$

On vérifie sans difficulté que L est une application linéaire surjective (montrez le !). Alors L^k est aussi une application linéaire surjective. Ainsi $I_k = Im(L^k) = \mathbb{K}^{\mathbb{N}}$ pour tout $k \in \mathbb{N}$ et la suite (I_k) est constante.

Regardons N_k pour $k \in \mathbb{N}$. Soit $u = (u_0, u_1, u_2, \dots) \in \mathbb{K}^{\mathbb{N}}$:

$$u \in N_k \Leftrightarrow L^k(u) = 0_{\mathbb{K}^{\mathbb{N}}}$$

 $\Leftrightarrow (u_k, u_{k+1}, u_{k+2}, \dots) = 0_{\mathbb{K}^{\mathbb{N}}}$
 $\Leftrightarrow \forall s \geq k, \quad u_s = 0$

La suite (N_k) est bien strictement croissante pour l'inclusion.

Remarque. On a $L \circ R = Id_{\mathbb{K}^{\mathbb{N}}}$. On retrouve en particulier que R est injective et que L est surjective (cours sur les applications). **MAIS** R et L ne sont pas bijectives. En particulier, on a $R \circ L \neq Id_{\mathbb{K}^{\mathbb{N}}}$ puisque :

$$R \circ L(u) = (0, u_1, u_2, u_3, \dots).$$

Rappelons que pour $f, g \in \mathcal{L}(E)$, l'implication $(f \circ g = Id \Rightarrow f, g \text{ bijectives})$ n'est vrai que si on est **EN DIMENSION FINIE!**

Ces deux applications sont intéressantes à retenir...

2. (a) • Supposons que $(N_k = N_{k+1} \text{ et } I_{k+1} = I_{k+2})$. Montrons que $I_k = I_{k+1}$. On a déjà que $I_k \supset I_{k+1}$, reste à montrer l'autre inclusion.

Soit $y \in I_k$, alors il existe $x_1 \in E$ tel que $y = f^k(x_1)$. De plus, on a $f(y) \in I_{k+1} = I_{k+2}$. Donc il existe $x_2 \in I_{k+2}$ tel que $f(y) = f^{k+2}(x_2)$. On a ainsi

$$f(y) = f^{k+1}(x_1) = f^{k+2}(x_2).$$

En particulier, on a $f^{k+1}(x_1 - f(x_2)) = 0_E$ et donc $x_1 - f(x_2) \in N_{k+1} = N_k$. On a donc $f^k(x_1 - f(x_2)) = 0_E$. Finalement, on a

$$y = f^k(x_1) = f^{k+1}(x_2).$$

Ainsi $y \in I_{k+1}$ et on a l'inclusion $I_k \subset I_{k+1}$.

• Supposons que $(I_k=I_{k+1}$ et $N_{k+1}=N_{k+2})$. Montrons que $N_k=N_{k+1}$. On a déjà $N_k\subset N_{k+1}$.

Soit $y \in N_{k+1}$, alors $f^k(y) \in I_k = I_{k+1}$. Il existe donc $x \in E$ tel que $f^k(y) = f^{k+1}(x)$. Mais alors :

$$f^{k+2}(x) = f^{k+1}(y) = 0_E.$$

Ainsi $x \in N_{k+2} = N_{k+1}$. On en déduit donc que $f^k(y) = f^{k+1}(x) = 0_E$ et donc que y appartient à N_k . D'où l'inclusion $N_{k+1} \subset N_k$.

- (b) On suppose donc l'existence de tels entiers p et q. On veut montrer que p=q (on a déjà ce résultat en dimension finie).
 - si p < q, alors $(N_{q-1} = N_q \text{ et } I_q = I_{q+1})$. Par la question précédente, on aurait alors $I_{q-1} = I_q$, ce qui contredirait la définition (la minimalité) de l'entier q. Donc on a $p \ge q$.
 - si p > q, de même $(I_{p-1} = I_p \text{ et } N_p = N_{p+1})$, d'où $N_{p-1} = N_p$ ce qui contredit la définition de p cette fois. Ainsi on a $p \leq q$.

Finalement, on a bien p = q.