TD10

Suites numériques

Limites de suites

Exercice 1

Déterminer les limites des suites suivantes, $n \in \mathbb{N} - \{0,1\}, x \in \mathbb{R}$:

a)
$$u_n = \sqrt{n+1} - \sqrt{n}$$

$$= \sqrt{n+1} - \sqrt{n}$$
 d) u_n

b)
$$u_n = \frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}}$$
 e) $u_n = \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2 + k}}$

c)
$$u_n = \frac{a^n - b^n}{a^n + b^n}$$
, $(a, b) \in (\mathbb{R}_+^*)^2$ f) $u_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + k}}$

$$d) u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$$

e)
$$u_n = \sum_{k=1}^{2n+1} \frac{1}{\sqrt{n^2 + k}}$$

f)
$$u_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + k}}$$

g)
$$u_n = \sqrt[n]{2 + (-1)^n}$$

$$h) u_n = \left(1 + \frac{x}{n}\right)^n$$

$$i) u_n = (\ln n)^{1/n}$$

g)
$$u_n = \sqrt[n]{2 + (-1)^n}$$

h) $u_n = \left(1 + \frac{x}{n}\right)^n$
i) $u_n = (\ln n)^{1/n}$
j) $u_n = \left(\sin \frac{1}{n}\right)^{1/\ln n}$

Exercice 2 Montrer que : $\forall x \in \mathbb{R}, |\sin(x) - x| \le \frac{x^2}{2}$. En déduire $\lim_{n \to +\infty} \sum_{k=1}^{n} \sin\left(\frac{k}{n^2}\right)$.

Exercice 3

Soit (u_n) une suite réelle telle que : $\forall n \in \mathbb{N}, u_n \in \mathbb{Z}$. Montrer que (u_n) converge si et seulement si (u_n) est stationnaire.

Exercice 4 (Moyenne de Césaro) Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. On pose pour tout $n\in\mathbb{N}^*$, $v_n=\frac{1}{n}\sum_{k=1}^n u_k$.

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est monotone, alors la suite $(v_n)_{n\in\mathbb{N}}$ est monotone et de même sens que $(u_n)_{n\in\mathbb{N}}$.
- 2. (a) Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers $(v_n)_{n\in\mathbb{N}}$ aussi. Que pensez-vous de la réciproque ?
 - (b) Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $l\in\mathbb{R}, (v_n)_{n\in\mathbb{N}}$ aussi.
 - (c) Montrer que si $\lim (w_{n+1} w_n) = 0$, alors $\lim \frac{w_n}{n} = 0$. Donner un exemple d'une telle suite qui ne soit pas convergente.

Exercice 5 (Règle de D'Alembert) Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers une limite l.

- 1. Si l < 1, montrer que $(u_n)_{n \in \mathbb{N}}$ converge vers 0.
- 2. Si l > 1, monter que $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.
- 3. Que dire quand l = 1?

Exercice 6

Soit A une partie non vide et majorée de \mathbb{R} , et soit $M \in \mathbb{R}$ un majorant de A. Montrer l'équivalence :

$$M = \sup(A) \Leftrightarrow \exists (a_n) \in A^{\mathbb{N}}, M = \lim a_n.$$

1

PCSI5 Lycée Saint Louis

Exercice 7

Soit (u_n) une suite bornée.

- a) Montrer que l'on peut poser pour tout $n \in \mathbb{N}$, $v_n = \sup\{u_k | k \ge n\}$ et $w_n = \inf\{u_k | k \ge n\}$.
- b) Montrer que les suites (v_n) et (w_n) sont convergentes.
- c) Montrer que la suite (u_n) est convergente si et seulement si $\lim v_n = \lim w_n$.

Suites implicites

Exercice 8

Soient $n \in \mathbb{N}$, $I_n =]n\pi - \frac{\pi}{2}$, $n\pi + \frac{\pi}{2}[$ et (E) l'équation $\tan x = x$.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'équation (E) admet une unique solution x_n dans I_n .
- 2. Déterminer la limite de $(x_n)_{n\in\mathbb{N}}$, et montrer que $\frac{1}{n\pi}x_n \underset{n\to+\infty}{\longrightarrow} 1$.
- 3. Montrer qu'il existe $(v_n)_{n\in\mathbb{N}}$ qui converge vers 0 telle que $x_n=n\pi+\frac{\pi}{2}+v_n$ pour tout $n\in\mathbb{N}$.

Exercice 9

- a) Montrer que pour tout $n \in \mathbb{N}$, l'équation $x^3 + nx = 1$ admet une unique solution réelle. On note u_n cette solution.
- b) Montrer que la suite (u_n) est strictement décroissante.
- c) En déduire qu'elle converge et calculer sa limite.

Exercice 10

- a) Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $x + x^2 + \cdots + x^n = 1$ admet une unique solution réelle dans l'intervalle $[0, +\infty[$. On note x_n cette solution.
- b) Montrer que la suite (x_n) est monotone, puis convergente, et calculer sa limite.

Suites extraites

Exercice 11

- a) Soit $u_n = \sin(n\pi/4) + \cos(n\pi/2)$. Est-elle convergente?
- b) Même question pour la suite $v_n = \sin(n\pi/3) + \frac{1}{n}$.

Exercice 12

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ telle que les suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 13

On dit qu'une suite est périodique si $\exists p \in \mathbb{N}^*, \ \forall n \in \mathbb{N}, \ u_{n+p} = u_n$. Montrer que toute suite réelle périodique et convergente est constante.

Exercice 14

- 1. Soit (u_n) une suite réelle monotone admettant une sous-suite convergente. Montrer que la suite (u_n) est convergente.
- 2. Soit (u_n) une suite non bornée. Montrer qu'il existe une sous-suite de (u_n) qui tend vers l'infini.

Suites adjacentes

Exercice 15

Soit $(a, b) \in \mathbb{R}^2$ tels que 0 < a < b. On pose $u_0 = a$, $v_0 = b$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que : $\forall n \in \mathbb{N}, \ 0 < u_n < v_n$.
- 2. Montrer que : $\forall n \in \mathbb{N}, \ v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$
- 3. Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 16

Soit pour tout $n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$, $u_n = H_n - \ln n$ et $v_n = H_n - \ln(n+1)$.

On se propose de montrer de calculer de deux façons la limite de H_n en $+\infty$.

- 1. (a) Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{1}{n+1} \le \ln\left(\frac{n+1}{n}\right) \le \frac{1}{n}$.
 - (b) Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
 - (c) En déduire l'existence de $\gamma \in \mathbb{R}$ et d'une suite $(w_n)_{n \in \mathbb{N}^*}$ qui converge vers 0 tels que pour $n \in \mathbb{N}^*$, $\sum_{k=1}^{\infty} \frac{1}{k} = \ln n + \gamma + w_n \text{ (γ est appelée constante d'Euler)}.$
 - (d) Quelle est la limite de H_n en $+\infty$?
 - (e) Déterminer la limite de $\left(\sum_{k=1}^{2n} \frac{1}{k}\right)$.
- 2. (a) Montrer que : $\forall n \in \mathbb{N}^*, H_{2n} H_n \geq \frac{1}{2}$
 - (b) En déduire que $\lim_{n\to+\infty} H_n = +\infty$.

Suites récurrentes

Exercice 17

Donner le terme général des suites définies par :

a)
$$u_0 = 0$$
 et : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}u_n + 2.$

b) $u_0 = 1$ et : $\forall n \in \mathbb{N}, u_{n+1} = -u_n + 4$.

Exercice 18

Donner le terme général et étudier la convergence des suites définies par $(u_0, u_1) \in \mathbb{R}^2$ et pour tout $n \in \mathbb{N}$:

a)
$$u_{n+2} = u_{n+1} - \frac{1}{4}u_n$$
;

b)
$$u_{n+2} = u_{n+1} - \frac{1}{2}u_n$$

a)
$$u_{n+2} = u_{n+1} - \frac{1}{4}u_n$$
; b) $u_{n+2} = u_{n+1} - \frac{1}{2}u_n$; c) $u_{n+2} = \frac{1}{2}(u_{n+1} + u_n)$.

Exercice 19

Étudier les suites définies par :

a)
$$\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n(1 - u_n) \ ;$$

c)
$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n e^{-u_n} \text{ et } u_0 = 1 ;$$

b)
$$u_0 = 1/2$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}(4 - u_n)$;

d)
$$\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + 2u_n) \text{ et } u_0 \in \mathbb{R}.$$

PCSI5

Exercice 20

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=2$ et $u_{n+1}=\frac{1}{2}\left(u_n+\frac{2}{u_n}\right)$.

- 1. Montrer que u_n existe et $u_n \ge \sqrt{2}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \sqrt{2}| \leq \frac{|u_n \sqrt{2}|^2}{2}$.
- 3. En déduire que $\forall n \in \mathbb{N}, |u_n \sqrt{2}| \leq \frac{1}{2^{2^n 1}}$ et donner la limite de $(u_n)_{n \in \mathbb{N}}$.
- 4. Combien de termes de la suite faut-il calculer pour avoir une approximation de $\sqrt{2}$ à 10^{-100} près ?

Exercice 21

Soient x > 1, $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par récurrence par $u_0 = x$, $v_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}(u_n + v_n)$, $v_{n+1} = \frac{2u_nv_n}{u_n + v_n}$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont bien définies et à termes > 0.
- 2. Montrer que $\forall n \in \mathbb{N}, u_n \geq v_n$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers la même limite.
- 4. Montrer que la suite $(u_n v_n)_{n \in \mathbb{N}}$ est constante. En déduire la valeur de la limite commune à $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$.

Suites complexes

Exercice 22

Étudier la convergence des suites complexes (z_n) définies par :

- 1. pour tout $n \in \mathbb{N}$, $z_n = x_n + iy_n$ avec $(x_0, y_0) \in \mathbb{R}^2$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{1}{2}(x_n y_n)$ et $y_{n+1} = \frac{1}{2}(x_n + y_n)$.
- 2. pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{i}{2}z_n + 1$.

Exercice 23

On considère la suite complexe (z_n) définie par $z_0 = re^{i\theta}$ $(-\pi \le \theta \le \pi)$ et :

$$\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + |z_n|}{2}.$$

On désigne par r_n le module de z_n et par θ_n l'argument de z_n tel que $-\pi \le \theta_n \le \pi$.

- a) Effectuer la construction géométrique de z_{n+1} à partir de z_n .
- b) Exprimer r_{n+1} et θ_{n+1} en fonction de r_n et de θ_n , et en déduire $\lim \theta_n$.
- c) Étudier la suite $u_n = r_n \sin\left(\frac{\theta}{2^n}\right)$, et en déduire r_n et $\lim r_n$, puis $\lim z_n$.